Skip to main content
Log in

Reproductive and Productive Efficiency of Maghrebi Dairy She-Camels Fed Diets Supplemented with Zinc-Methionine

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study is aimed at evaluating the effect of dietary zinc-methionine (Zn-Met) supplementation during 3 months prepartum up to 9 months postpartum on reproductive performance, blood biochemical, and milk production of lactating she-camels besides growth performance of their calves. Twenty pregnant Maghrebi she-camels (439.49 ± 11.57 kg; 3–5 parties) were divided into four similar groups. Animals were fed the basal diet (G1) or the basal diet supplemented with Zn-Met at levels of 30 mg (G2), 40 mg (G3), and 50 mg (G4)/kg diet. Results revealed that IgA, IgM, and IgG concentrations in colostrum, monthly milk yield, and lactation period were significantly increased in Zn-Met-supplemented groups. Milk contents of fat, ash, and total solids improved (P < 0.05) in G4 as compared with other groups. Pre- and postpartum Zn, T3, T4, P4, and E2 concentrations in plasma and milk Zn level were higher (P < 0.05) in all Zn-Met-supplemented groups. Postpartum first estrus interval, number of services/conception, days open, pregnancy rate, duration of placental drop, and calving interval improved (P < 0.05) in G4. Weaning weight and average daily gain of calves were enhanced all in Zn-Met-supplemented groups. Conclusively, the inclusion of Zn-Met especially at a level of 50 mg/kg diet, 3 months prepartum up to 9 months postpartum, led to better productive and reproductive performance, immunity of she-camels, and growth performance of their offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Farah Z, Rettenmaier R, Atkins D (1992) Vitamin content of camel milk. Int J Vitam Nutr Res 62(1):30–33

    CAS  PubMed  Google Scholar 

  2. Ali MMH, El-Sayed MA (2015) Relationship of trace minerals nutritional status of camel (Camelus dromedarius) to their contents in Egyptian feedstuff. Int J Anim Vet Sci 9(11)

  3. Miller JK, Ramsey N, Madsen FC (1988) The trace elements. In: Church DC (ed) The ruminant animal: digestive physiology and nutrition. Prentice Hall, Englewood Cliffs, pp 342–347

    Google Scholar 

  4. Paripatananont T, Lovell RT (1995) Chelated zinc reduces the dietary zinc requirement of channel catfish, Ictalurus punctatus. Aquaculture 133(1):73–82

    Article  CAS  Google Scholar 

  5. Nockels C, DeBonis J, Torrent J (1993) Stress induction affects copper and zinc balance in calves fed organic and inorganic copper and zinc sources. J Anim Sci 71(9):2539–2545

    Article  CAS  PubMed  Google Scholar 

  6. Spears J (1989) Zinc methionine for ruminants: relative bioavailability of zinc in lambs and effects of growth and performance of growing heifers 1, 2. J Anim Sci 67(3):835–843

    Article  CAS  PubMed  Google Scholar 

  7. Sobhanirad S, Carlson D, Kashani RB (2010) Effect of zinc methionine or zinc sulfate supplementation on milk production and composition of milk in lactating dairy cows. Biol Trace Elem Res 136(1):48–54

    Article  CAS  PubMed  Google Scholar 

  8. Abd El-Salaam AM, Arafa MM (2018) Post-partum hematological, biochemical, mineral and hormonal changes in blood of Maghrebian she-camels with different parity orders under Egyptian condition. J Agric Vet Sci 11(2):68–78

    Google Scholar 

  9. Fahey JL, McKelvey EM (1965) Quantitative determination of serum Immuno-globulins in antibody agar plates. J Immunol 94:84

    CAS  PubMed  Google Scholar 

  10. Mancini G, Carbonara A, Heremans J (1965) Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2(3):235–IN236

    Article  CAS  PubMed  Google Scholar 

  11. Sandell E, Kolthoff I (1937) Micro determination of iodine by a catalytic method. Microchim Acta 1(1):9–25

    Article  CAS  Google Scholar 

  12. Gaines WL (1928) The energy basis of measuring milk yield in dairy cows. Bulletin (University of Illinois (Urbana-Champaign campus) Agricultural Experiment Station); no 308

  13. Drupt E (1974) Colorimetric determination of albumin. Biol J 9:977

    Google Scholar 

  14. Armstrong WD, Carr CW (1964) Physiological chemistry laboratory directions, 3rd edn, Minneapolis

  15. Kostner G, Avogaro P, Bon GB, Cazzolato G, Quinci G (1979) Determination of high-density lipoproteins: screening methods compared. Clin Chem 25(6):939–942

    Article  CAS  PubMed  Google Scholar 

  16. Trinder P (1969) Determination of blood serum glucose. Ann Clin Biochem 6:24–27

    Article  CAS  Google Scholar 

  17. Schalm OW, Jain NC, Carroll EJ (1975) Veterinary hematology, 3rd edn. Lea & Febiger

  18. SAS (2002) Statistical analysis system user’s guide (version 7). SAS Institute Inc, Cary

    Google Scholar 

  19. Nocek J, Braund D, Warner R (1984) Influence of neonatal colostrum administration, immunoglobulin, and continued feeding of colostrum on calf gain, health, and serum protein. J Dairy Sci 67(2):319–333

    Article  CAS  PubMed  Google Scholar 

  20. Dresler S, Illek J, Zeman L (2016) Effects of organic zinc supplementation in weaned calves. Acta Vet Brno 85(1):49–54

    Article  Google Scholar 

  21. Nemec L, Richards J, Atwell C, Diaz D, Zanton G, Gressley T (2012) Immune responses in lactating Holstein cows supplemented with Cu, Mn, and Zn as sulfates or methionine hydroxy analogue chelates. J Dairy Sci 95(8):4568–4577

    Article  CAS  PubMed  Google Scholar 

  22. Fielden EM, Rotilio G (1984) The structure and mechanism of Cu/Zn super oxide dismutase. In: Lontie R (ed) Copper proteins and copper enzymes, vol II. CRC Press, Boca Raton, p 27

    Google Scholar 

  23. Dang AK, Prasad S, De K, Pal S, Mukherjee J, Sandeep IVR, Mutoni G, Pathan MM, Jamwal M, Kapila S, Kapila R, Kaur H, Dixit S, Mohanty AK, Prakash BS (2013) Effect of supplementation of vitamin E, copper and zinc on the in vitro phagocytic activity and lymphocyte proliferation index of peripartum Sahiwal (Bos indicus) cows. J Anim Physiol Anim Nutr 97(2):315–321. https://doi.org/10.1111/j.1439-0396.2011.01272.x

    Article  CAS  Google Scholar 

  24. Gaafer HMA, Bassiouni M, Ali MFE, Shitta AA, Shamas ASE (2011) Effect of zinc methionine supplementation on productive performance of lactating Friesian cows. Span J Rural Dev 2(1):53–62

    Article  Google Scholar 

  25. Kellogg D, Socha M, Tomlinson D, Johnson A (2003) Effects of feeding cobalt glucoheptonate and metal specific amino acid complexes of zinc, manganese, and copper on lactation and reproductive performance of dairy cows. Prof Anim Sci 19(1):1–9

    Article  Google Scholar 

  26. Iwańska S, Strusińska D, Pysera B (1999) Effect of rumen protected methionine supplementation on early lactational responses of dairy cows fed a grass silage and cereals diet. Acta Vet Hung 47(2):191–206

    Article  PubMed  Google Scholar 

  27. Schwab C, Bozak C, Whitehouse N, Olson V (1992) Amino acid limitation and flow to the duodenum at four stages of lactation. 2. Extent of lysine limitation1, 2. J Dairy Sci 75(12):3503–3518

    Article  CAS  PubMed  Google Scholar 

  28. Jing L, Liu H, Zhu RJ, Yang SL, Gou X, Mao HM (2010) Effects of stream-flaked corn, niacin and zinc methionine on milk yield and composition in early lactation dairy cow. China Feed 20:19–21

    Google Scholar 

  29. Alimohamady R, Aliarabi H, Bruckmaier RM, Christensen RG (2018) Effect of different sources of supplemental zinc on performance, nutrient digestibility, and antioxidant enzyme activities in lambs. Biol Trace Elem Res:1–10

  30. Seymour WM, Polan CE, Herbein JH (1990) Effects of dietary protein degradability and casein or amino acid infusions on production and plasma amino acids in dairy cows. J Dairy Sci 73(3):735–748

    Article  CAS  PubMed  Google Scholar 

  31. Shinde P, Dass RS, Garg AK, Chaturvedi VK, Kumar R (2006) Effect of zinc supplementation from different sources on growth, nutrient digestibility, blood metabolic profile, and immune response of male Guinea pigs. Biol Trace Elem Res 112(3):247–262

    Article  CAS  PubMed  Google Scholar 

  32. Abu El-Ella A, El-Malky O, Zeedan K (2014) Studies on using biogen-zinc on productive and reproductive performance of ruminants. 1-physiological responses of Damascus goats to diet supplementation with biogen-zinc. Egypt J Sheep Goat Sci 9(3):29–48

    Google Scholar 

  33. Zeedan K, El-Malky OM, Komonna OF, Abdel-Latif MA, Abouelenin EIM (2008) Effect of biogen-zinc supplementation on some production, digestion, rumen fermentation and some blood parameters in buffalo. Egypt J Anim Prod 45:557–569

    Google Scholar 

  34. Zeedan K, El-Malky O, Komonna O Productive and reproductive performance of buffaloes fed on rations supplemented with biogen-zinc at late pregnancy period. In: Proceedings of the 2nd Scientific Conference of animal wealth research in the Middle East and North Africa, Cairo International Convention Center, 24–26 October, 2009, 2009. Massive Conferences and Trade Fairs, pp 237–249

  35. Shams AS (2008) Utilization of zincmethionine supplementation on milk productionand somatic cell count in friesian cows., Anim. Prod. Dept. Kafr El-Sheikh, Egypt,

  36. EI-Masry KA, Habeeb AA (1989) Thyroid functions in lactating Friesian cows and water buffaloes under winter and summer Egyptian conditions. In: Paper presented at the the third Egyptian British conference on animals, fish and poultry production, Alexandria

  37. El-Masry KA, Marai IF (1991) Comparison between Friesian and water buffaloes in growth rate, milk production and blood constituents during winter and summer conditions of Egypt. Anim Prod 53:39–53

    Google Scholar 

  38. Underwood EJ, Suttle NF (1999) The mineral nutrition of livestock. CABI Publishing, CAB International, Wallingford, Oxon, UK,

    Book  Google Scholar 

  39. Mullis L, Spears J, McCraw R (2003) Effects of breed (Angus vs Simmental) and copper and zinc source on mineral status of steers fed high dietary iron. J Anim Sci 81(1):318–322

    Article  CAS  PubMed  Google Scholar 

  40. Wieringa FT, Dijkhuizen MA, Fiorentino M, Laillou A, Berger J (2015) Determination of zinc status in humans: which indicator should we use. Nutrients 7(5):3252–3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mallaki M, Norouzian MA, Khadem AA (2015) Effect of organic zinc supplementation on growth, nutrient utilization, and plasma zinc status in lambs. Turk J Vet Anim Sci 39(1):75–80

    Article  CAS  Google Scholar 

  42. Aliarabi H, Fadayifar A, Tabatabaei MM, Zamani P, Bahari A, Farahavar A, Dezfoulian AH (2015) Effect of zinc source on hematological, metabolic parameters and mineral balance in lambs. Biol Trace Elem Res 168(1):82–90

    Article  CAS  PubMed  Google Scholar 

  43. Hill CH, Matrone G (1970) Chemical parameters in the study of in vivo and in vitro interactions of transition elements. Fed Proc 4:1474–1481

    Google Scholar 

  44. Cvetković A, Ćirić V, Jovanović M, Litričin V, Lješević Ž, Marjanović D, Paunović S, Petrović M (1986) Klinička dijagnostika unutrašnjih bolesti domaćih životinja. . Univerzitet u beogradu, veterinarski fakultet:pp. 332 (Sr)

  45. Elnageeb ME, Abdelatif AM (2010) The minerals prolife in desert ewes (Ovis aries): effect of pregnancy, lactation and dietary supplementation. Am Eurasian J Agric Environ Sci 7:18–30

    CAS  Google Scholar 

  46. Souza AR, Martins LP, LCd F, Martins MEP, Ferreira RN, Silva AML, Gil ES, Conceição EC (2007) Studies on the bioavailability of zinc in rats supplementated with two different zinc-methionine compounds. Lat Am J Pharm 26:825–830

    Google Scholar 

  47. Abou-Zeina HAA, Hassan SG, Sabra HA, Launam AM (2009) Trails for calving adverse effect of heat stress in buffaloes with emphasis on metabolic status and fertility. Global Vet 3(1):51–62

    CAS  Google Scholar 

  48. Gupta RP, Verma PC, Garg SL (1997) Effect of experimental zinc deficiency on thyroid gland in guinea pigs. Ann Nutr Metab 41:376–381

    Article  CAS  PubMed  Google Scholar 

  49. Nishiyama S, Futagoishi-Suginohara Y, Matsukura M, Nakamura T, Higashi A, Shinohara M, Matsuda I (1994) Zinc supplementation alters thyroid hormone metabolism in disabled patients with zinc deficiency. J Am Coll Nutr 13(1):62–67

    Article  CAS  PubMed  Google Scholar 

  50. Liu N, Liu P, Xu Q, Zhu L, Zhao Z, Wang Z, Li Y, Feng W, Zhu L (2001) Elements in erythrocytes of population with different thyroid hormone status. Biol Trace Elem Res 84(1–3):37–43

    Article  CAS  PubMed  Google Scholar 

  51. Gottsch ML, Van Kirk EA, Murdoch WJ (2000) Tumour necrosis factor alpha up-regulates matrix metalloproteinase-2 activity in periovulatory ovine follicles: metamorphic and endocrine implications. Reprod Fertil Dev 12(2):75–80. https://doi.org/10.1071/RD00054

    Article  CAS  PubMed  Google Scholar 

  52. Monem UA, El-Shahat K (2011) Effect of different dietary levels of inorganic zinc oxide on ovarian activities, reproductive performance of Egyptian Baladi ewes and growth of their lambs. Bulgarian J Vet Med 14(2):116–123

    Google Scholar 

  53. Phiri E, Nkya R, Pereka A, Mgasa M, Larsen T (2007) The effects of calcium, phosphorus and zinc supplementation on reproductive performance of crossbred dairy cows in Tanzania. Trop Anim Health Prod 39(5):317–323

    Article  CAS  PubMed  Google Scholar 

  54. De K, Pal S, Prasad S, Dang AK (2014) Effect of micronutrient supplementation on the immune function of crossbred dairy cows under semi-arid tropical environment. Trop Anim Health Prod 46(1):203–211. https://doi.org/10.1007/s11250-013-0477-1

    Article  PubMed  Google Scholar 

  55. Ali H, Ezzo O, El-Ekhnawy K (1998) Effect of zinc supplementation on reproductive performance of Barki ewes under practical field conditions. Vet Med J Cairo Univ(Egypt) 46:77–87

    CAS  Google Scholar 

  56. El-Nour HH, Rahman H, El-Wakeel S (2010) Effect of zinc-methionine supplementation on reproductive performance, kid’s performance, minerals profile and milk quality in early lactating Baladi goats. World Appl Sci J 9(3):275–282

    CAS  Google Scholar 

  57. Stevenson J, Britt J (1980) Models for prediction of days to first ovulation based on changes in endocrine and nonendocrine traits during the first two weeks postpartum in Holstein cows 1. J Anim Sci 50(1):103–112

    Article  CAS  PubMed  Google Scholar 

  58. Kundu M, De AK, Jeyakumar S, Sunder J, Kundu A, Sujatha T (2014) Effect of zinc supplementation on reproductive performance of Teressa goat. Vet World 7(6):380–383

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Salah Ayyat.

Ethics declarations

The existing study was conducted in the Center of Studies and Development of Camel Production, Marsa Matrouh Governorate, belonging to the Animal Production Research Institute, Agricultural Research Centre, Giza, Egypt.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostafa, T.H., Bakr, A.A. & Ayyat, M.S. Reproductive and Productive Efficiency of Maghrebi Dairy She-Camels Fed Diets Supplemented with Zinc-Methionine. Biol Trace Elem Res 194, 135–144 (2020). https://doi.org/10.1007/s12011-019-01744-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01744-0

Keywords

Navigation