Skip to main content

Advertisement

Log in

Biomonitoring of Heavy Metals in River Ganga Water, Sediments, Plant, and Fishes of Different Trophic Levels

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this study, the pattern of metals concentration in water, sediment, plants, and three edible fish species (Channa striata, Labeo rohita, and Catla catla) of different trophic levels, captured from Jajmau (Kanpur), an important fishery area of river Ganga in Uttar Pradesh, India was examined. The heavy metals, Ni, Pb, Fe, Cu, Zn, Cd, Cr, and Co, were estimated in the liver, kidney, muscles, and gill tissues of abovesaid species of fish. The highest metal concentration was reported in the bottom feeder fish as compared with the column and surface feeders. The result obtained after analysis of water sample reflects the order of occurrence of heavy metals as Fe > Cr > Pb > Ni > Cd > Zn > Cu > Co. Sediments analysis indicates high concentration of Fe and Cr, making the entire environment from top to bottom, stressful. Target hazard quotient (THQ) and hazard index (HI) of the three species suggest a potential risk to the health of consumers, the humans. Thus, it is inevitable that the river Ganga should be closely monitored to safeguard human health.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agarwal R, Kumar R, Behari JR (2007) Mercury and lead content in fish species from the river Gomti, Lucknow, India, as biomarkers of contamination. Bull Environ Contam Toxicol 78:118–122. https://doi.org/10.1007/s00128-007-9035-8

    Article  CAS  PubMed  Google Scholar 

  2. Ahilan B, Jeyaseelan MJP (2001) Effect of cobalt chloride and vitamin B12 on the growth and gonadal maturation of goldfish, Carassius auratus. Ind J Fish 48:369–374

    Google Scholar 

  3. Al-Busaidi M, Yesudhason P, Al-Waili A, Al-Rahbi W, Al-Harthy K, Al-Mazrooei N, Al-Habsi S (2013) International journal of fisheries and aquaculture accumulation of some potentially toxic metals and polycyclic aromatic hydrocarbons (PAHs) in marine clam Liochoncha ornata collected from the Omani Sea. Int J Fish Aquac 5:238–247. https://doi.org/10.5897/IJFA13

    Article  CAS  Google Scholar 

  4. Allen JRL, Rae JE (1986) Time sequence of metal pollution, Severn estuary, southwestern UK. Mar Pollut Bull 17:427–431. https://doi.org/10.1016/0025-326X(86)90323-1

    Article  CAS  Google Scholar 

  5. Alloway BJ, Brian J (2013) Heavy metals in soils : trace metals and mettalloids in soils and their bioavailability, environmental pollution, 3rd edn. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7

    Book  Google Scholar 

  6. APHA, AWWA, WEF (2012) Standard methods for the examination of water and wastewater, 22nd edn. APHA 800 I street, NW, Washington, DC, 20001-3710

  7. Awasthi Y, Ratn A, Prasad R, Kumar M, Trivedi SP (2018) An in vivo analysis of Cr6+induced biochemical, genotoxicological and transcriptional profiling of genes related to oxidative stress, DNA damage and apoptosis in liver of fish, Channa punctatus (Bloch, 1793). Aquat Toxicol 200:158–167. https://doi.org/10.1016/j.aquatox.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  8. Beg KR, Ali S (2008) Chemical contaminants and toxicity of Ganga River sediment from up and down stream area at Kanpur. Am J Environ Sci 4:362–366

    Article  CAS  Google Scholar 

  9. Biswas K, Paul D, Sinha N (2015) Prevalence of multiple antibiotic-resistant coliform bacteria in the water of river ganga. Front Environ Microbiol 1:44–46. https://doi.org/10.11648/j.fem.20150103.12

    Article  Google Scholar 

  10. Broun ER, Greist A, Tricot G, Hoffman R (1990) Excessive zinc ingestion. A reversible cause of sideroblastic anemia and bone marrow depression. JAMA 264:1441–1443

    Article  CAS  Google Scholar 

  11. Burger J, Gaines KF, Boring CS, Stephens WL, Snodgrass J, Dixon C, McMahon M, Shukla S, Shukla T, Gochfeld M (2002) Metal levels in fish from the Savannah River: potential hazards to fish and other receptors. Environ Res 89:85–97. https://doi.org/10.1006/enrs.2002.4330

    Article  CAS  PubMed  Google Scholar 

  12. Canli M, Atli G (2003) The relationships between heavy metal (cd, Cr, cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environ Pollut 121:129–136. https://doi.org/10.1016/S0269-7491(02)00194-X

    Article  CAS  PubMed  Google Scholar 

  13. Chale FMM (2002) Trace metal concentrations in water, sediments and fish tissue from Lake Tanganyika. Sci Total Environ 299:115–121

    Article  CAS  Google Scholar 

  14. Chary NS, Kamala CT, Raj D (2008) Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol Environ Saf 69:513–524. https://doi.org/10.1016/j.ecoenv.2007.04.013

    Article  CAS  PubMed  Google Scholar 

  15. Chien L-C, Hung T-C, Choang K-Y, Yeh C-Y, Meng P-J, Shieh M-J, Han B-C (2002) Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan. Sci Total Environ 285:177–185. https://doi.org/10.1016/S0048-9697(01)00916-0

    Article  CAS  PubMed  Google Scholar 

  16. Chorvatovičová D, Kováčiková Z, Šandula J, Navarová J (1993) Protective effect of sulfoethylglucan against hexavalent chromium. Mutat Res Lett 302:207–211. https://doi.org/10.1016/0165-7992(93)90106-6

    Article  Google Scholar 

  17. Copat C, Bella F, Castaing M, Fallico R, Sciacca S, Ferrante M (2012) Heavy metals concentrations in fish from Sicily (Mediterranean Sea) and evaluation of possible health risks to consumers. Bull Environ Contam Toxicol 88:78–83. https://doi.org/10.1007/s00128-011-0433-6

    Article  CAS  PubMed  Google Scholar 

  18. Dang HS, Jaiswal DD, Parameswaran M, Deodhar KP, Krishnamony S (1996) Age dependent physical and anatomical Indian data for application in internal dosimetry. Radiat Prot Dosim 63:217–222. https://doi.org/10.1093/oxfordjournals.rpd.a031532

    Article  Google Scholar 

  19. Daviglus M, Sheeshka J, Murkin E (2002) Health benefits from eating fish. Comments Toxicol 8:345–374. https://doi.org/10.1080/08865140215064

    Article  Google Scholar 

  20. Demirak A, Yilmaz F, Levent Tuna A, Ozdemir N (2006) Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere 63:1451–1458. https://doi.org/10.1016/J.CHEMOSPHERE.2005.09.033

    Article  CAS  PubMed  Google Scholar 

  21. Dwivedi S, Tiwari V, Trivedi SP (2015) Arsenite induced genotoxic effect and its phytoremediation by Acacia catechu leaf extract in freshwater fish, Channa punctatus (Bloch). Int J Fish Aquat Stud 2:163–165

    Google Scholar 

  22. Dwivedi S, Kumar M, Trivedi SP (2017) Mitigating potential of Melissa officinale against As3+−induced cytotoxicity and transcriptional alterations of Hsp70 and Hsp27 in fish, Channa punctatus (Bloch). Environ Monit Assess 189:306. https://doi.org/10.1007/s10661-017-6002-7

    Article  CAS  PubMed  Google Scholar 

  23. Ebrahimpour M, Pourkhabbaz A, Baramaki R, Babaei H, Rezaei M (2011) Concentration of heavy metals in freshwater fish species, Anzali, Iran. Bull Environ Contam Toxicol 87:386–392. https://doi.org/10.1007/s00128-011-0376-y

    Article  CAS  PubMed  Google Scholar 

  24. Esinulo AC, Kelle IA, Ogbuagu DH (2016) Concentration of Zn in muscle and brain tissues of the African catfish-Clarias gariepinus. J Geosci Environ Prot 04:12–20. https://doi.org/10.4236/gep.2016.45002

    Article  Google Scholar 

  25. Fallah AA, Saei-Dehkordi SS, Nematollahi A, Jafari T (2011) Comparative study of heavy metal and trace element accumulation in edible tissues of farmed and wild rainbow trout (Oncorhynchus mykiss) using ICP-OES technique. Microchem J 98:275–279. https://doi.org/10.1016/J.MICROC.2011.02.007

    Article  CAS  Google Scholar 

  26. Farkas A, Salánki J, Specziár A (2002) Relation between growth and the heavy metal concentration in organs of bream Abramis brama L. Populating Lake Balaton. Arch Environ Contam Toxicol 43:236–243. https://doi.org/10.1007/s00244-002-1123-5

    Article  CAS  PubMed  Google Scholar 

  27. Fernandes C, Fontaínhas-Fernandes A, Peixoto F, Salgado MA (2007) Concentration of heavy metals in Liza saliens from the Esmoriz–Paramos coastal lagoon, Portugal. Ecotoxicol Environ Saf 66:426–431. https://doi.org/10.1016/J.ECOENV.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  28. Forti E, Salovaara S, Cetin Y, Bulgheroni A, Tessadri R, Jennings P, Pfaller W, Prieto P (2011) In vitro evaluation of the toxicity induced by nickel soluble and particulate forms in human airway epithelial cells. Toxicol in Vitro 25:454–461. https://doi.org/10.1016/j.tiv.2010.11.013

    Article  CAS  PubMed  Google Scholar 

  29. Gammons CH, Slotton DG, Gerbrandt B, Weight W, Young CA, McNearny RL, Cámac E, Calderón R, Tapia H (2006) Mercury concentrations of fish, river water, and sediment in the Río Ramis-Lake Titicaca watershed, Peru. Sci Total Environ 368:637–648. https://doi.org/10.1016/j.scitotenv.2005.09.076

    Article  CAS  PubMed  Google Scholar 

  30. Giardina A, Larson SF, Wisner B, Wheeler J, Chao M (2009) Long-term and acute effects of zinc contamination of a stream on fish mortality and physiology. Environ Toxicol Chem 28:287. https://doi.org/10.1897/07-461.1

    Article  CAS  PubMed  Google Scholar 

  31. Giri S, Singh AK (2015) Human health risk and ecological risk assessment of metals in fishes, shrimps and sediment from a tropical river. Int J Environ Sci Technol 12:2349–2362. https://doi.org/10.1007/s13762-014-0600-5

    Article  CAS  Google Scholar 

  32. Gupta A, Rai DK, Pandey RS, Sharma B (2009) Analysis of some heavy metals in the riverine water, sediments and fish from river Ganges at Allahabad. Environ Monit Assess 157:449–458. https://doi.org/10.1007/s10661-008-0547-4

    Article  CAS  PubMed  Google Scholar 

  33. Headley TR, Herity E, Davison L (2005) Treatment at different depths and vertical mixing within a 1-m deep horizontal subsurface-flow wetland. Ecol Eng 25:567–582. https://doi.org/10.1016/j.ecoleng.2005.07.012

    Article  Google Scholar 

  34. Heinsbroek LTN, Van Hooff PLA, Swinkels W, Tanck MWT, Schrama JW, Verreth JAJ (2007) Effects of feed composition on life history developments in feed intake, metabolism, growth and body composition of European eel, Anguilla anguilla. Aquaculture 267:175–187. https://doi.org/10.1016/j.aquaculture.2007.03.028

    Article  CAS  Google Scholar 

  35. Hough RL, Breward N, Young SD, Crout NMJ, Tye AM, Moir AM, Thornton I (2004) Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environ Health Perspect 112:215–221. https://doi.org/10.1289/ehp.5589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jabeen F, Chaudhry AS (2010) Environmental impacts of anthropogenic activities on the mineral uptake in Oreochromis mossambicus from Indus River in Pakistan. Environ Monit Assess 166:641–651. https://doi.org/10.1007/s10661-009-1029-z

    Article  CAS  PubMed  Google Scholar 

  37. Jain SC, Metha SC, Kumar B, Reddy AR, Nagaratnam A (1995) Formulation of the reference Indian adult: anatomic and physiologic data. Health Phys 68:509–522

    Article  CAS  Google Scholar 

  38. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity , mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jarić I, Višnjić-Jeftić Ž, Cvijanović G, Gačić Z, Jovanović L, Skorić S, Lenhardt M (2011) Determination of differential heavy metal and trace element accumulation in liver, gills, intestine and muscle of sterlet (Acipenser ruthenus) from the Danube River in Serbia by ICP-OES. Microchem J 98:77–81. https://doi.org/10.1016/J.MICROC.2010.11.008

    Article  Google Scholar 

  40. Javed M, Usmani N (2016) Accumulation of heavy metals and human health risk assessment via the consumption of freshwater fish Mastacembelus armatus inhabiting, thermal power plant effluent loaded canal. Springerplus 5:776. https://doi.org/10.1186/s40064-016-2471-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jones JJ (1984) Plants. In: Williams S (ed) Official methods of analysis of the association of official analytical chemists. Association of official analytical chemists, Arlington

    Google Scholar 

  42. Karadede H, Oymak SA, Ünlü E (2004) Heavy metals in mullet, Liza abu, and catfish, Silurus triostegus, from the Atatürk dam lake (Euphrates), Turkey. Environ Int 30:183–188. https://doi.org/10.1016/S0160-4120(03)00169-7

    Article  CAS  PubMed  Google Scholar 

  43. Kojadinovic J, Potier M, Le Corre M, Cosson RP, Bustamante P (2007) Concentration of trace elements in pelagic fish from the Western Indian Ocean. Environ Pollut 146:548–566. https://doi.org/10.1016/j.envpol.2006.07.015

    Article  CAS  PubMed  Google Scholar 

  44. Kosanovic M, Hasan MY, Subramanian D, Al Ahbabi AAF, Al Kathiri OAA, Aleassa EMAA, Adem A (2007) Influence of urbanization of the western coast of the United Arab Emirates on trace metal content in muscle and liver of wild red-spot emperor (Lethrinus lentjan). Food Chem Toxicol 45:2261–2266. https://doi.org/10.1016/j.fct.2007.06.010

    Article  CAS  PubMed  Google Scholar 

  45. Kumar V, Trivedi SP (2015) Efficacy of Lawsonia inermis leaves extract against copper (cu++) toxicity induced in fish Channa punctatus (Bloch.) a study based on chromosomal aberrations. J Env Bio-Sci 29:87–92

    Google Scholar 

  46. Kumar M, Ratna A, Prashad R, Trivedi SP, Sharma YK, Shukla AK (2015) Assessment of zinc concentration in fish Channa Punctatus exposed chronically. GJBB 4:347–355

    CAS  Google Scholar 

  47. Kwok CK, Liang Y, Wang H, Dong YH, Leung SY, Wong MH (2014) Concentration of heavy metals in fish and Ardeid at Pearl River estuary, China. Ecotoxicol Environ Saf 106:62–67. https://doi.org/10.1016/j.ecoenv.2014.04.016

    Article  CAS  PubMed  Google Scholar 

  48. MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31. https://doi.org/10.1007/s002440010075

    Article  CAS  PubMed  Google Scholar 

  49. Maceda-Veiga A, Monroy M, de Sostoa A (2012) Metal concentration in the Mediterranean barbel (Barbus meridionalis) in a Mediterranean River receiving effluents from urban and industrial wastewater treatment plants. Ecotoxicol Environ Saf 76:93–101. https://doi.org/10.1016/j.ecoenv.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  50. Maceda-Veiga A, Monroy M, Navarro E, Viscor G, de Sostoa A (2013) Metal concentrations and pathological responses of wild native fish exposed to sewage discharge in a Mediterranean river. Sci Total Environ 449:9–19. https://doi.org/10.1016/j.scitotenv.2013.01.012

    Article  CAS  PubMed  Google Scholar 

  51. Mason RP, Laporte J, Andres S (2000) Factors controlling the concentration of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Arch Environ Contam Toxicol 38:283–297

    Article  CAS  Google Scholar 

  52. Naigaga I, Kaiser H, Muller WJ, Ojok L, Mbabazi D, Magezi G, Muhumuza E (2011) Fish as bioindicators in aquatic environmental pollution assessment: a case study in Lake Victoria wetlands, Uganda. Phys Chem Earth A B C 36(14–15):918–928. https://doi.org/10.1016/j.pce.2011.07.066

    Article  Google Scholar 

  53. Onsanit S, Ke C, Wang X, Wang K-J, Wang W-X (2010) Trace elements in two marine fish cultured in fish cages in Fujian province, China. Environ Pollut 158:1334–1342. https://doi.org/10.1016/j.envpol.2010.01.012

    Article  CAS  PubMed  Google Scholar 

  54. Pal M, Trivedi SP (2016) Impact of chromium trioxide on haematological parameters of freshwater fish, Channa punctatus (Bloch). Euro J Exp Bio 6(2):40–42

    CAS  Google Scholar 

  55. Palaniappan PLRM, Karthikeyan S (2009) Concentration and depuration of chromium in the selected organs and whole body tissues of freshwater fish Cirrhinus mrigala individually and in binary solutions with nickel. J Environ Sci 21:229–236. https://doi.org/10.1016/S1001-0742(08)62256-1

    Article  CAS  Google Scholar 

  56. Paul D (2017) Research on heavy metal pollution of river ganga : a review. Ann Agric Sci 15:278–286. https://doi.org/10.1016/j.aasci.2017.04.001

    Article  Google Scholar 

  57. Peto MV (2010) Aluminium and Iron in humans: concentration, pathology, and removal. Rejuvenation Res 13:589–598. https://doi.org/10.1089/rej.2009.0995

    Article  CAS  PubMed  Google Scholar 

  58. Plessl C, Otachi EO, Körner W, Avenant-Oldewage A, Jirsa F (2017) Fish as bioindicators for trace element pollution from two contrasting lakes in the eastern Rift Valley, Kenya: spatial and temporal aspects. Environ Sci Pollut Res 24:19767–19776. https://doi.org/10.1007/s11356-017-9518-z

    Article  CAS  Google Scholar 

  59. Pourang N (1995) Heavy metal concentration in different tissues of two fish species with regards to their feeding habits and trophic levels. Environ Monit Assess 35:207–219. https://doi.org/10.1007/BF00547632

    Article  CAS  PubMed  Google Scholar 

  60. Rahman MS, Molla AH, Saha N, Rahman A (2012) Study on heavy metals levels and its risk assessment in some edible fishes from Bangshi River, Savar, Dhaka, Bangladesh. Food Chem 134:1847–1854. https://doi.org/10.1016/J.FOODCHEM.2012.03.099

    Article  CAS  PubMed  Google Scholar 

  61. Rahman MS, Saha N, Molla AH (2014) Potential ecological risk assessment of heavy metal contamination in sediment and water body around Dhaka export processing zone, Bangladesh. Environ Earth Sci 71:2293–2308. https://doi.org/10.1007/s12665-013-2631-5

    Article  CAS  Google Scholar 

  62. Rai UN, Upadhyay AK, Singh NK, Dwivedi S, Tripathi RD (2015) Seasonal applicability of horizontal sub-surface flow constructed wetland for trace elements and nutrient removal from urban wastes to conserve Ganga River water quality at Haridwar, India. Ecol Eng 81:115–122. https://doi.org/10.1016/j.ecoleng.2015.04.039

    Article  Google Scholar 

  63. Ratn A, Awasthi Y, Kumar M, Singh SK, Tripathi R, Trivedi SP (2017) Phorate induced oxidative stress, DNA damage and differential expression of p53, apaf-1 and cat genes in fish, Channa punctatus (Bloch, 1793). Chemosphere 182:182–391. https://doi.org/10.1016/j.chemosphere.2017.05.008

    Article  CAS  Google Scholar 

  64. Ratn A, Prasad R, Awasthi Y, Kumar M, Misra A, Trivedi SP (2018) Zn 2+ induced molecular responses associated with oxidative stress, DNA damage and histopathological lesions in liver and kidney of the fish, Channa punctatus (Bloch, 1793). Ecotoxicol Environ Saf 151:10–20. https://doi.org/10.1016/j.ecoenv.2017.12.058

    Article  CAS  PubMed  Google Scholar 

  65. Rauf A, Javed M, Ubaidullah M (2009) Heavy metal levels in three major carps (Catla catla, labeo rohita and cirrhina mrigala) from the river ravi, Pakistan. Pak Vet J 29:24–26

    CAS  Google Scholar 

  66. Ricart M, Guasch H, Barceló D, Brix R, Conceição MH, Geiszinger A, de Alda MJL, López-Doval JC, Muñoz I, Postigo C, Romaní AM, Villagrasa M, Sabater S (2010) Primary and complex stressors in polluted mediterranean rivers: pesticide effects on biological communities. J. Hydrol 383:52–61. https://doi.org/10.1016/j.jhydrol.2009.08.014

    Article  CAS  Google Scholar 

  67. Roméo M, Siau Y, Sidoumou Z, Gnassia-Barelli M (1999) Heavy metal distribution in different fish species from the Mauritania coast. Sci Total Environ 232:169–175

    Article  Google Scholar 

  68. Shinn C, Dauba F, Grenouillet G, Guenard G, Lek S (2009) Temporal variation of heavy metal contamination in fish of the river lot in southern France. Ecotoxicol Environ Saf 72:1957–1965. https://doi.org/10.1016/J.ECOENV.2009.06.007

    Article  CAS  PubMed  Google Scholar 

  69. Shukla A, Trivedi SP (2017) Anionic surfactant , linear alkyl benzene sulphonate induced oxidative stress and hepatic impairments in fish Channa punctatus. Proc Zool Soc 1–8:382–389. https://doi.org/10.1007/s12595-017-0223-1

    Article  Google Scholar 

  70. Sia Su GL, Ramos GB, Sia Su MLL (2013) Concentration and histopathological alteration of total lead in selected fishes from Manila Bay, Philippines. Saudi J Biol Sci 20:353–355. https://doi.org/10.1016/j.sjbs.2013.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: an overview. Indian J Pharmacol 43:246–253. https://doi.org/10.4103/0253-7613.81505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Song B, Lei M, Chen T, Zheng Y, Xie Y, Li X, Gao D (2009) Assessing the health risk of heavy metals in vegetables to the general population in Beijing, China. J Environ Sci 21:1702–1709. https://doi.org/10.1016/S1001-0742(08)62476-6

    Article  CAS  Google Scholar 

  73. Sreedevi P, Sivaramakrishna B, Suresh A, Radhakrishnaiah K (1992) Effect of nickel on some aspects of protein metabolism in the gill and kidney of the freshwater fish, Cyprinus carpio L. Environ Pollut 77:59–63. https://doi.org/10.1016/0269-7491(92)90158-7

    Article  CAS  PubMed  Google Scholar 

  74. Storelli MM (2008) Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food Chem Toxicol 46:2782–2788. https://doi.org/10.1016/J.FCT.2008.05.011

    Article  CAS  PubMed  Google Scholar 

  75. Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  76. Terra BF, Araújo FG, Calza CF, Lopes RT, Teixeira TP (2008) Heavy metal in tissues of three fish species from different trophic levels in a tropical Brazilian river. Water Air Soil Pollut 187:275–284. https://doi.org/10.1007/s11270-007-9515-9

    Article  CAS  Google Scholar 

  77. USEPA (1989) Health effect assessments summary tables (HEAST) and user’s guide, 368 Office of Emergency and 369 remedial response. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  78. Venkatesharaju K, Somashekar RK, Prakash KL (2010) Study of seasonal and spatial variation in surface water quality of Cauvery river stretch in Karnataka. J Ecol Nat Environ 2:001–009

    CAS  Google Scholar 

  79. Vicente-Martorell JJ, Galindo-Riaño MD, García-Vargas M, Granado-Castro MD (2009) Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary. J Hazard Mater 162:823–836. https://doi.org/10.1016/j.jhazmat.2008.05.106

    Article  CAS  PubMed  Google Scholar 

  80. Weber P, Behr ER, Knorr CDL, Vendruscolo DS, Flores EMM, Dressler VL, Baldisserotto B (2013) Metals in the water, sediment, and tissues of two fish species from different trophic levels in a subtropical Brazilian river. Microchem J 106:61–66. https://doi.org/10.1016/J.MICROC.2012.05.004

    Article  CAS  Google Scholar 

  81. Wong CM, Pittock J, Schelle P (2007) World’s top 10 rivers at risk. WWF Rep. 53

  82. www.bis.org.in/org/ANNUALREPORT1112.pdf

  83. www.cpcb.nic.in/cpcbold/upload/AnnualReports/AnnualReport_40_Annual_Report_09-10.pdf

  84. www.who.int/water_sanitation_health/dwq/GDWQ2004web.pdf (2004) Guidelines for drinking water quality, 3rd ed. vol 1

  85. Yadav KK, Trivedi SP (2006) Evaluation of genotoxic potential of chromium (VI) in channa punctata fish in terms of chromosomal aberrations. Asian Pac J Cancer Prev 7:472–476

    CAS  PubMed  Google Scholar 

  86. Yi Y, Yang Z, Zhang S (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut 159:2575–2585. https://doi.org/10.1016/J.ENVPOL.2011.06.011

    Article  CAS  PubMed  Google Scholar 

  87. Zeitoun MM, Sayed E, Mehana E (2014) Impact of water pollution with heavy metals on fish health: overview and updates. Glob Vet 12:219–231. https://doi.org/10.5829/idosi.gv.2014.12.02.82219

    Article  CAS  Google Scholar 

  88. Zeng J, Yang L, Wang X, Wang W-X, Wu QL (2012) Metal accumulation in fish from different zones of a large, shallow freshwater lake. Ecotoxicol Environ Saf 86:116–124. https://doi.org/10.1016/J.ECOENV.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  89. Zhao Y, Xia XH, Yang ZF, Wang F (2012) Assessment of water quality in Baiyangdian Lake using multivariate statistical techniques. Procedia Environ Sci 13:1213–1226. https://doi.org/10.1016/j.proenv.2012.01.115

    Article  CAS  Google Scholar 

  90. Zheng N, Wang Q, Zhang X, Zheng D, Zhang Z, Zhang S (2007) Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China. Sci Total Environ 387:96–104. https://doi.org/10.1016/j.scitotenv.2007.07.044

    Article  CAS  PubMed  Google Scholar 

  91. Zheng J-L, Luo Z, Chen Q-L, Liu X, Liu C-X, Zhao Y-H, Gong Y (2011) Effect of waterborne zinc exposure on metal accumulation, enzymatic activities and histology of Synechogobius hasta. Ecotoxicol Environ Saf 74:1864–1873. https://doi.org/10.1016/j.ecoenv.2011.06.018

    Article  CAS  PubMed  Google Scholar 

  92. Zhou Q, Zhang J, Fu J, Shi J (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We record our sincere thanks to the UGC, New Delhi, for providing Special Assistance Programme (SAP) and the Department of Science and Technology, Government of India for providing FIST and PURSE Programs. We are also grateful to the Head of Department of Zoology, University of Lucknow, Lucknow (226007), for providing necessary laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil P. Trivedi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Gupta, N., Ratn, A. et al. Biomonitoring of Heavy Metals in River Ganga Water, Sediments, Plant, and Fishes of Different Trophic Levels. Biol Trace Elem Res 193, 536–547 (2020). https://doi.org/10.1007/s12011-019-01736-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01736-0

Keywords

Navigation