Effects of Chromium and Carnitine Co-supplementation on Body Weight and Metabolic Profiles in Overweight and Obese Women with Polycystic Ovary Syndrome: a Randomized, Double-Blind, Placebo-Controlled Trial


The primary aim of our study was to determine the influence of taking chromium plus carnitine on insulin resistance, with a secondary objective of evaluating the influences on lipid profiles and weight loss in overweight subjects with polycystic ovary syndrome (PCOS). In a 12-week randomized, double-blind, placebo-controlled clinical trial, 54 overweight women were randomly assigned to receive either supplements (200 μg/day chromium picolinate plus 1000 mg/day carnitine) or placebo (27/each group). Chromium and carnitine co-supplementation decreased weight (− 3.6 ± 1.8 vs. − 1.0 ± 0.7 kg, P < 0.001), BMI (− 1.3 ± 0.7 vs. − 0.3 ± 0.3 kg/m2, P < 0.001), fasting plasma glucose (FPG) (− 5.1 ± 6.0 vs. − 1.1 ± 4.9 mg/dL, P = 0.01), insulin (− 2.0 ± 1.4 vs. − 0.2 ± 1.2 μIU/mL, P < 0.001), insulin resistance (− 0.5 ± 0.4 vs. − 0.04 ± 0.3, P < 0.001), triglycerides (− 18.0 ± 25.2 vs. + 5.5 ± 14.4 mg/dL, P < 0.001), total (− 17.0 ± 20.3 vs. + 3.6 ± 12.0 mg/dL, P < 0.001), and LDL cholesterol (− 13.3 ± 19.2 vs. + 1.4 ± 13.3 mg/dL, P = 0.002), and elevated insulin sensitivity (+ 0.007 ± 0.005 vs. + 0.002 ± 0.005, P < 0.001). In addition, co-supplementation upregulated peroxisome proliferator-activated receptor gamma (P = 0.02) and low-density lipoprotein receptor expression (P = 0.02). Overall, chromium and carnitine co-supplementation for 12 weeks to overweight women with PCOS had beneficial effects on body weight, glycemic control, lipid profiles except HDL cholesterol levels, and gene expression of PPAR-γ and LDLR. Clinical trial registration number: http://www.irct.ir: IRCT20170513033941N38.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Change history

  • 28 February 2020

    The Editors-in-Chief are currently investigating this article [Jamilian, M., Foroozanfard, F., Kavossian, E. et al. Effects of Chromium and Carnitine Co-supplementation on Body Weight and Metabolic Profiles in Overweight and Obese Women with Polycystic Ovary Syndrome: a Randomized, Double-Blind, Placebo-Controlled Trial. Biol Trace Elem Res 193, 334–341 (2020). https://doi.org/10.1007/s12011-019-01720-8] as concerns have been raised about integrity of the clinical trial reported here. There is also an ongoing investigation by the Iranian National Committee for Ethics in Biomedical Researches. Further editorial action will be taken as appropriate once the investigation into the concerns is complete and all parties have been given an opportunity to respond in full.


  1. 1.

    Polak K, Czyzyk A, Simoncini T, Meczekalski B (2017) New markers of insulin resistance in polycystic ovary syndrome. J Endocrinol Investig 40:1–8. https://doi.org/10.1007/s40618-016-0523-8

    CAS  Article  Google Scholar 

  2. 2.

    Azziz R, Carmina E, Chen Z, Dunaif A, Laven JSE, Legro RS, Lizneva D, Natterson-Horowtiz B, Teede HJ, Yildiz BO (2016) Polycystic ovary syndrome. Nat Rev Dis Primers 2:16057. https://doi.org/10.1038/nrdp.2016.57

    Article  PubMed  Google Scholar 

  3. 3.

    Harris HR, Terry KL (2016) Polycystic ovary syndrome and risk of endometrial, ovarian, and breast cancer: a systematic review. Fertil Res Pract 2:14. https://doi.org/10.1186/s40738-016-0029-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Condorelli RA, Calogero AE, Di Mauro M et al (2018) Androgen excess and metabolic disorders in women with PCOS: beyond the body mass index. J Endocrinol Investig 41:383–388

    CAS  Article  Google Scholar 

  5. 5.

    Goodman NF, Cobin RH, Futterweit W, Glueck JS, Legro RS, Carmina E (2015) American Association of Clinical Endocrinologists, American College of Endocrinology, and Androgen Excess and PCOS Society disease state clinical review: guide to the best practices in the evaluation and treatment of polycystic ovary syndrome - part 2. Endocr Pract 21:1415–1426

    Article  Google Scholar 

  6. 6.

    Wild RA, Rizzo M, Clifton S, Carmina E (2011) Lipid levels in polycystic ovary syndrome: systematic review and meta-analysis. Fertil Steril 95:1073–1079.e1071-1011

    CAS  Article  Google Scholar 

  7. 7.

    Baranova A, Tran TP, Afendy A, Wang L, Shamsaddini A, Mehta R, Chandhoke V, Birerdinc A, Younossi ZM (2013) Molecular signature of adipose tissue in patients with both non-alcoholic fatty liver disease (NAFLD) and polycystic ovarian syndrome (PCOS). J Transl Med 11:133. https://doi.org/10.1186/1479-5876-11-133

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Xue Y, Xu P, Xue K, Duan X, Cao J, Luan T, Li Q, Gu L (2017) Effect of vitamin D on biochemical parameters in polycystic ovary syndrome women: a meta-analysis. Arch Gynecol Obstet 295:487–496

    CAS  Article  Google Scholar 

  9. 9.

    Foroozanfard F, Jamilian M, Jafari Z et al (2015) Effects of zinc supplementation on markers of insulin resistance and lipid profiles in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Exp Clin Endocrinol Diabetes 123:215–220

    CAS  Article  Google Scholar 

  10. 10.

    Ringseis R, Keller J, Eder K (2012) Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur J Nutr 51:1–18

    CAS  Article  Google Scholar 

  11. 11.

    Hua Y, Clark S, Ren J, Sreejayan N (2012) Molecular mechanisms of chromium in alleviating insulin resistance. J Nutr Biochem 23:313–319

    CAS  Article  Google Scholar 

  12. 12.

    Suksomboon N, Poolsup N, Yuwanakorn A (2014) Systematic review and meta-analysis of the efficacy and safety of chromium supplementation in diabetes. J Clin Pharm Ther 39:292–306

    CAS  Article  Google Scholar 

  13. 13.

    Asadi M, Rahimlou M, Shishehbor F, Mansoori A (2019) The effect of l-carnitine supplementation on lipid profile and glycaemic control in adults with cardiovascular risk factors: a systematic review and meta-analysis of randomized controlled clinical trials. Clin Nutr. https://doi.org/10.1016/j.clnu.2019.01.020

  14. 14.

    Cha YS (2008) Effects of L-carnitine on obesity, diabetes, and as an ergogenic aid. Asia Pac J Clin Nutr 17(Suppl 1):306–308

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Jamilian M, Asemi Z (2015) Chromium supplementation and the effects on metabolic status in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Ann Nutr Metab 67:42–48

    CAS  Article  Google Scholar 

  16. 16.

    Komorowski J, Juturu V (2005) Chromium supplementation does not improve glucose tolerance, insulin sensitivity, or lipid profile: a randomized, placebo-controlled, double-blind trial of supplementation in subjects with impaired glucose tolerance. Diabetes Care 28:712–713

    Article  Google Scholar 

  17. 17.

    Lee BJ, Lin JS, Lin YC, Lin PT (2016) Effects of L-carnitine supplementation on lipid profiles in patients with coronary artery disease. Lipids Health Dis 15:107. https://doi.org/10.1186/s12944-016-0277-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Samimi M, Jamilian M, Ebrahimi FA, Rahimi M, Tajbakhsh B, Asemi Z (2016) Oral carnitine supplementation reduces body weight and insulin resistance in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Clin Endocrinol 84:851–857

    CAS  Article  Google Scholar 

  19. 19.

    Zhou B, Wang H, Luo G, Niu R, Wang J (2013) Effect of dietary yeast chromium and L-carnitine on lipid metabolism of sheep. Biol Trace Elem Res 155:221–227

    CAS  Article  Google Scholar 

  20. 20.

    Wang J, Du R, Qin J et al (2003) Effect of yeast chromium and L-carnitine on lipid metabolism of broiler chickens. Asian Austral J Anim 16:1809–1815

    CAS  Article  Google Scholar 

  21. 21.

    Tian H, Guo X, Wang X et al (2013) Chromium picolinate supplementation for overweight or obese adults. Cochrane Database Syst Rev:Cd010063. https://doi.org/10.1002/14651858.CD010063.pub2

  22. 22.

    Ainsworth BE, Haskell WL, Whitt MC et al (2000) Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc 32:S498–S504

    CAS  Article  Google Scholar 

  23. 23.

    Pisprasert V, Ingram KH, Lopez-Davila MF, Munoz AJ, Garvey WT (2013) Limitations in the use of indices using glucose and insulin levels to predict insulin sensitivity: impact of race and gender and superiority of the indices derived from oral glucose tolerance test in African Americans. Diabetes Care 36:845–853

    CAS  Article  Google Scholar 

  24. 24.

    Pooyandjoo M, Nouhi M, Shab-Bidar S, Djafarian K, Olyaeemanesh A (2016) The effect of (L-)carnitine on weight loss in adults: a systematic review and meta-analysis of randomized controlled trials. Obes Rev 17:970–976

    CAS  Article  Google Scholar 

  25. 25.

    Onakpoya I, Posadzki P, Ernst E (2013) Chromium supplementation in overweight and obesity: a systematic review and meta-analysis of randomized clinical trials. Obes Rev 14:496–507

    CAS  Article  Google Scholar 

  26. 26.

    Fazelian S, Rouhani MH, Bank SS, Amani R (2017) Chromium supplementation and polycystic ovary syndrome: a systematic review and meta-analysis. J Trace Elem Med Biol 42:92–96

    CAS  Article  Google Scholar 

  27. 27.

    Tang XL, Sun Z, Gong L (2018) Chromium supplementation in women with polycystic ovary syndrome: systematic review and meta-analysis. J Obstet Gynaecol Res 44:134–143

    CAS  Article  Google Scholar 

  28. 28.

    Sundaram B, Singhal K, Sandhir R (2012) Ameliorating effect of chromium administration on hepatic glucose metabolism in streptozotocin-induced experimental diabetes. Biofactors 38:59–68

    CAS  Article  Google Scholar 

  29. 29.

    Xu Y, Jiang W, Chen G et al (2017) L-carnitine treatment of insulin resistance: a systematic review and meta-analysis. Adv Clin Exp Med 26:333–338

    Article  Google Scholar 

  30. 30.

    Vidal-Casariego A, Burgos-Pelaez R, Martinez-Faedo C et al (2013) Metabolic effects of L-carnitine on type 2 diabetes mellitus: systematic review and meta-analysis. Exp Clin Endocrinol Diabetes 121:234–238

    CAS  Article  Google Scholar 

  31. 31.

    Derosa G, Maffioli P, Ferrari I, D’Angelo A, Fogari E, Palumbo I, Randazzo S, Cicero AFG (2011) Comparison between orlistat plus l-carnitine and orlistat alone on inflammation parameters in obese diabetic patients. Fundam Clin Pharmacol 25:642–651

    CAS  Article  Google Scholar 

  32. 32.

    Derosa G, Cicero AF, Gaddi A, Mugellini A, Ciccarelli L, Fogari R (2003) The effect of L-carnitine on plasma lipoprotein(a) levels in hypercholesterolemic patients with type 2 diabetes mellitus. Clin Ther 25:1429–1439

    CAS  Article  Google Scholar 

  33. 33.

    Sahin K, Tuzcu M, Orhan C, Sahin N, Kucuk O, Ozercan IH, Juturu V, Komorowski JR (2013) Anti-diabetic activity of chromium picolinate and biotin in rats with type 2 diabetes induced by high-fat diet and streptozotocin. Br J Nutr 110:197–205

    CAS  Article  Google Scholar 

  34. 34.

    Pala R, Genc E, Tuzcu M, Orhan C, Sahin N, Er B, Cinar V, Sahin K (2018) L-carnitine supplementation increases expression of PPAR-gamma and glucose transporters in skeletal muscle of chronically and acutely exercised rats. Cell Mol Biol (Noisy-le-grand) 64:1–6

    Article  Google Scholar 

  35. 35.

    Zheng JL, Luo Z, Zhuo MQ, Pan YX, Song YF, Hu W, Chen QL (2014) Dietary L-carnitine supplementation increases lipid deposition in the liver and muscle of yellow catfish (Pelteobagrus fulvidraco) through changes in lipid metabolism. Br J Nutr 112:698–708

    CAS  Article  Google Scholar 

  36. 36.

    Caviglia D, Scarabelli L, Palmero S (2004) Effects of carnitines on rat sertoli cell protein metabolism. Horm Metab Res 36:221–225

    CAS  Article  Google Scholar 

  37. 37.

    Matsusue K, Peters JM, Gonzalez FJ (2004) PPARbeta/delta potentiates PPARgamma-stimulated adipocyte differentiation. FASEB J 18:1477–1479

    CAS  Article  Google Scholar 

  38. 38.

    Sharma AK, Bharti S, Ojha S et al (2011) Up-regulation of PPARgamma, heat shock protein-27 and -72 by naringin attenuates insulin resistance, beta-cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes. Br J Nutr 106:1713–1723

    CAS  Article  Google Scholar 

  39. 39.

    Fernyhough ME, Okine E, Hausman G, Vierck JL, Dodson MV (2007) PPARgamma and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte. Domest Anim Endocrinol 33:367–378

    CAS  Article  Google Scholar 

  40. 40.

    Jamilian M, Zadeh Modarres S, Amiri Siavashani M, Karimi M, Mafi A, Ostadmohammadi V, Asemi Z (2018) The influences of chromium supplementation on glycemic control, markers of cardio-metabolic risk, and oxidative stress in infertile polycystic ovary syndrome women candidate for in vitro fertilization: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res 185:48–55

    CAS  Article  Google Scholar 

  41. 41.

    Paiva AN, Lima JG, Medeiros AC et al (2015) Beneficial effects of oral chromium picolinate supplementation on glycemic control in patients with type 2 diabetes: a randomized clinical study. J Trace Elem Med Biol 32:66–72

    CAS  Article  Google Scholar 

  42. 42.

    Malaguarnera M, Vacante M, Avitabile T, Malaguarnera M, Cammalleri L, Motta M (2009) L-carnitine supplementation reduces oxidized LDL cholesterol in patients with diabetes. Am J Clin Nutr 89:71–76

    CAS  Article  Google Scholar 

  43. 43.

    Strijbis K, Vaz FM, Distel B (2010) Enzymology of the carnitine biosynthesis pathway. IUBMB Life 62:357–362

    CAS  PubMed  Google Scholar 

  44. 44.

    Lee H-G, Yin J-L, Xu C-X, Hong ZS, Lee ZH, Jin YC, Choi CW, Lee DH, Kim KH, Choi YJ (2011) Effects of the combination of glucose, chromium picolinate, and vitamin c on lipid metabolism in steers. Asian Australas J Anim Sci 24:1674–1680

    CAS  Article  Google Scholar 

  45. 45.

    Patalay M, Lofgren IE, Freake HC, Koo SI, Fernandez ML (2005) The lowering of plasma lipids following a weight reduction program is related to increased expression of the LDL receptor and lipoprotein lipase. J Nutr 135:735–739

    CAS  Article  Google Scholar 

  46. 46.

    Woodworth JC, Tokach MD, Nelssen JL, Goodband RD, Dritz SS, Koo SI, Minton JE, Owen KQ (2007) Influence of dietary L-carnitine and chromium picolinate on blood hormones and metabolites of gestating sows fed one meal per day. J Anim Sci 85:2524–2537

    CAS  Article  Google Scholar 

Download references


The authors would like to thank the staff of Taleghani Clinic (Arak, Iran) for their assistance in this project.

Author information




ZA contributed in conception, design, statistical analysis, and drafting of the manuscript. MJ, FF, EK, EA, MK, EA, and AM contributed in data collection and manuscript drafting. All authors approved the final version for submission. ZA supervised the study.

Corresponding author

Correspondence to Zatollah Asemi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jamilian, M., Foroozanfard, F., Kavossian, E. et al. Effects of Chromium and Carnitine Co-supplementation on Body Weight and Metabolic Profiles in Overweight and Obese Women with Polycystic Ovary Syndrome: a Randomized, Double-Blind, Placebo-Controlled Trial. Biol Trace Elem Res 193, 334–341 (2020). https://doi.org/10.1007/s12011-019-01720-8

Download citation


  • Carnitine
  • Chromium
  • Body weight
  • Metabolic profiles
  • Polycystic ovary syndrome