Synthesis and Biodistribution Study of Biocompatible 198Au Nanoparticles by use of Arabinoxylan as Reducing and Stabilizing Agent

Abstract

Radioactive gold-198 is a useful diagnostic and therapeutic agent. Gold in the form of nanoparticles possesses even more exciting properties. This work aimed at arabinoxylan-mediated synthesis and biodistribution study of radioactive gold nanoparticles (198AuNPs). The particles were synthesized by mixing suspension of arabinoxylan with H198AuCl4 without use of any additional reducing and stabilizing agents. An aqueous suspension of arabinoxylan was added to a H198AuCl4 solution, which resulted in reduction of Au3+ to 198AuNPs. Biodistribution was studied in vitro and in rabbit. The particles having exceptional stability were readily formed. Highest radioactivity was recorded in spleen after 3 h followed by liver, heart, kidney, and lungs after i.v. administration. After 24 h, the activity was not detectable in the spleen; it accumulated in the liver. However, after oral administration, the activity mainly accumulated in the colon. In serum proteins, the distribution was α1-globulin 6.5%, α2-globulin ~ 2%, β-globulin ~ 1%, γ-globulin 0.7%, and albumin 0.7% of the administered dose. This indicates a low protein binding implying high bioavailability of the particles. The cytotoxicity study showed that the particles were inactive against HeLa cell line and Agrobacteriumtumefaciens. Highly stable 198AuNPs reported in this work have the potential for targeting the colon. They show affinity for globulins, the property that can be used in the study of the immune system.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Change history

  • 23 May 2019

    The original version of this article unfortunately contained a mistake.

  • 23 May 2019

    The original version of this article unfortunately contained a mistake.

  • 23 May 2019

    The original version of this article unfortunately contained a mistake.

  • 23 May 2019

    The original version of this article unfortunately contained a mistake.

  • 23 May 2019

    The original version of this article unfortunately contained a mistake.

  • 23 May 2019

    The original version of this article unfortunately contained a mistake.

  • 23 May 2019

    The original version of this article unfortunately contained a mistake.

References

  1. 1.

    Riley RS, Day ES (2017) Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotech 9

    Google Scholar 

  2. 2.

    Mahan MM, Doiron AL (2018) Gold nanoparticles as X-ray, CT, and multimodal imaging contrast agents: formulation, targeting, and methodology. J Nanomater 2018:1–15

    Article  Google Scholar 

  3. 3.

    Ruan S, Yuan M, Zhang L et al (2015) Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 37:425–435. https://doi.org/10.1016/j.biomaterials.2014.10.007

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Manohar N, Reynoso FJ, Diagaradjane P, Krishnan S, Cho SH (2016) Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop x-ray fluorescence computed tomography. Sci Rep 6:22079. https://doi.org/10.1038/srep22079

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Vigderman L, Zubarev ER (2013) Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv Drug Deliv Rev 65:663–676. https://doi.org/10.1016/j.addr.2012.05.004

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Jain PK (2014) Gold nanoparticles for physics, chemistry and biology. Edited by Catherine Louis and Olivier Pluchery. Angew Chem Int Ed 53:1197–1197. https://doi.org/10.1002/anie.201309807

    CAS  Article  Google Scholar 

  7. 7.

    Nam J-M, Thaxton CS, Mirkin CA et al (2009) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Nature 9:1–8. https://doi.org/10.1016/j.toxlet.2005.10.003

    CAS  Article  Google Scholar 

  8. 8.

    Her S, Jaffray DA, Allen C (2017) Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev 109:84–101

    CAS  Article  Google Scholar 

  9. 9.

    Austin LA, MacKey MA, Dreaden EC, El-Sayed MA (2014) The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol 88:1391–1417

    CAS  Article  Google Scholar 

  10. 10.

    Qu X, Li Y, Li L, et al (2015) Fluorescent gold nanoclusters: synthesis and recent biological application. J Nanomater 2015:Article ID 784097

  11. 11.

    Ma Z, Xia H, Liu Y, Liu B, Chen W, Zhao YD (2013) Applications of gold nanorods in biomedical imaging and related fields. Chin Sci Bull 58:2530–2536. https://doi.org/10.1007/s11434-013-5720-7

    CAS  Article  Google Scholar 

  12. 12.

    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248. https://doi.org/10.1021/jp057170o

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B: Biointerfaces 58:3–7. https://doi.org/10.1016/j.colsurfb.2006.08.005

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Alric C, Taleb J, Le Duc G et al (2008) Contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 130:5908–5915. https://doi.org/10.1021/ja078176p

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Norouzi H, Khoshgard K, Akbarzadeh F (2018) In vitro outlook of gold nanoparticles in photo-thermal therapy: a literature review. Lasers Med Sci 33:917–926

    Article  Google Scholar 

  16. 16.

    Huang X, El-Sayed MA (2011) Plasmonic photo-thermal therapy (PPTT). Alexandria J Med 47:1–9. https://doi.org/10.1016/j.ajme.2011.01.001

    CAS  Article  Google Scholar 

  17. 17.

    Axiak-Bechtel SM, Upendran A, Lattimer JC, Kelsey J, Cutler CS, Selting KA, Bryan JN, Henry CJ, Boote E, Tate DJ, Bryan ME, Katti KV, Kannan R (2014) Gum arabic-coated radioactive gold nanoparticles cause no short-term local or systemic toxicity in the clinically relevant canine model of prostate cancer. Int J Nanomedicine 9:5001–5011. https://doi.org/10.2147/IJN.S67333

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Shukla R, Chanda N, Zambre A, Upendran A, Katti K, Kulkarni RR, Nune SK, Casteel SW, Smith CJ, Vimal J, Boote E, Robertson JD, Kan P, Engelbrecht H, Watkinson LD, Carmack TL, Lever JR, Cutler CS, Caldwell C, Kannan R, Katti KV (2012) Laminin receptor specific therapeutic gold nanoparticles (198AuNP-EGCg) show efficacy in treating prostate cancer. Proc Natl Acad Sci 109:12426–12431. https://doi.org/10.1073/pnas.1121174109

    Article  PubMed  Google Scholar 

  19. 19.

    Chanda N, Kan P, Watkinson LD, Shukla R, Zambre A, Carmack TL, Engelbrecht H, Lever JR, Katti K, Fent GM, Casteel SW, Smith CJ, Miller WH, Jurisson S, Boote E, Robertson JD, Cutler C, Dobrovolskaia M, Kannan R, Katti KV (2010) Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. Nanomedicine 6:201–209. https://doi.org/10.1016/j.nano.2009.11.001

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Radionuclide NR, Phillips WT, Otto RA, Bao A (2011) Interventional therapy of head and neck cancer with lipid nanoparticle-carried Rhenium-186 radionuclide. J Vasc Interv Radiol 21:1271–1279. https://doi.org/10.1016/j.jvir.2010.02.027.Interventional

    Article  Google Scholar 

  21. 21.

    Al-Yasiri AY, Khoobchandani M, Cutler CS et al (2017) Mangiferin functionalized radioactive gold nanoparticles (MGF- 198 AuNPs) in prostate tumor therapy: green nanotechnology for production, in vivo tumor retention and evaluation of therapeutic efficacy. Dalton Trans 46:14561–14571. https://doi.org/10.1039/C7DT00383H

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Tobias JS, Hochhauser D (2009) Cancer and its management. Wiley, Hoboken

    Google Scholar 

  23. 23.

    Kim D, Park S, Jae HL et al (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661–7665. https://doi.org/10.1021/ja071471p

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Lee J, Chatterjee DK, Lee MH, Krishnan S (2014) Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett 347:46–53

    CAS  Article  Google Scholar 

  25. 25.

    Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol:49. https://doi.org/10.1088/0031-9155/49/18/N03

    CAS  Article  Google Scholar 

  26. 26.

    Chen Y, Wang X (2008) Novel phase-transfer preparation of monodisperse silver and gold nanoparticles at room temperature. Mater Lett 62:2215–2218. https://doi.org/10.1016/j.matlet.2007.11.050

    CAS  Article  Google Scholar 

  27. 27.

    Jeong GH, Lee YW, Kim M, Han SW (2009) High-yield synthesis of multi-branched gold nanoparticles and their surface-enhanced Raman scattering properties. J Colloid Interface Sci 329:97–102. https://doi.org/10.1016/J.JCIS.2008.10.004

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Deraedt C, Salmon L, Gatard S, Ciganda R, Hernandez R, Ruiz J, Astruc D (2014) Sodium borohydride stabilizes very active gold nanoparticle catalysts. Chem Commun 50:14194–14196. https://doi.org/10.1039/c4cc05946h

    CAS  Article  Google Scholar 

  29. 29.

    Amin M, Iram F, Iqbal MS, Saeed MZ, Raza M, Alam S (2013) Arabinoxylan-mediated synthesis of gold and silver nanoparticles having exceptional high stability. Carbohydr Polym 92:1896–1900. https://doi.org/10.1016/j.carbpol.2012.11.056

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Iram F, Iqbal MS, Athar MM, Saeed MZ, Yasmeen A, Ahmad R (2014) Glucoxylan-mediated green synthesis of gold and silver nanoparticles and their phyto-toxicity study. Carbohydr Polym 104:29–33. https://doi.org/10.1016/j.carbpol.2014.01.002

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Rabito MF, Reis AV, dos Reis Freitas A et al (2012) A pH/enzyme-responsive polymer film consisting of Eudragit® FS 30 D and arabinoxylane as a potential material formulation for colon-specific drug delivery system. Pharm Dev Technol 17:429–436. https://doi.org/10.3109/10837450.2010.546409

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Agarwal VK, Gupta A, Chaturvedi S, Khan F (2016) Polysaccharide: carrier in colon targeted drug delivery system. MIT Int J Pharm Sci 2:1–9

    Google Scholar 

  33. 33.

    Lemarchand C, Gref R, Couvreur P (2004) Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm 58:327–341

    CAS  Article  Google Scholar 

  34. 34.

    Massey S, Iqbal MS, Wolf B et al (2016) Comparative drug loading and release study on some carbohydrate polymers. Lat Am J Pharm 35:146–155

    CAS  Google Scholar 

  35. 35.

    Weitzhandler M, Barreto V, Pohl C, Jandik P, Cheng J, Avdalovic N (2004) CarboPacTM PA20: a new monosaccharide separator column with electrochemical detection with disposable gold electrodes. J Biochem Biophys Methods 60:309–317. https://doi.org/10.1016/j.jbbm.2004.01.009

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Saeman JF, Moore WE, Mitchell RL, Millett MA (1954) Techniques for the determination of pulp constituents by quantitative paper chromatography. TAPPI J 37:336–343

    CAS  Google Scholar 

  37. 37.

    Rahman S (2016) Size and concentration analysis of gold nanoparticles with ultraviolet-visible spectroscopy. Undergrad J Math Model One + Two 7:13. https://doi.org/10.5038/2326-3652.7.1.4872

    Article  Google Scholar 

  38. 38.

    Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Math Klasse 1918:98–100

  39. 39.

    Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131. https://doi.org/10.1038/nprot.2008.75

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Trigui F, Pigeon P, Jalleli K et al (2013) Selection of a suitable disc bioassay for the screening of anti-tumor molecules. Int J Biomed Sci 9:230–236

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  Article  Google Scholar 

  42. 42.

    Parker AR, Jolles S, Ponsford M et al (2018) Quantification of human C1 esterase inhibitor protein using an automated turbidimetric immunoassay. J Clin Lab Anal 33:e22627. https://doi.org/10.1002/jcla.22627

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Saghir S, Iqbal MS, Hussain MA, Koschella A, Heinze T (2008) Structure characterization and carboxymethylation of arabinoxylan isolated from Ispaghula (Plantago ovata) seed husk. Carbohydr Polym 74:309–317. https://doi.org/10.1016/j.carbpol.2008.02.019

    CAS  Article  Google Scholar 

  44. 44.

    Izydorczyk MS, Biliaderis CG, Lazaridou A et al (2007) Functional food carbohydrates. CRC Press, Boca Raton

  45. 45.

    Iram F, Massey S, Iqbal MS, Ward DG (2018) Structural investigation of hemicelluloses from Plantago ovata, Mimosa pudica and Lallemantia royleana by MALDI-ToF mass spectrometry. J Carbohydr Chem 37:1–17. https://doi.org/10.1080/07328303.2018.1487973

    CAS  Article  Google Scholar 

  46. 46.

    Tomaszewska E, Soliwoda K, Kadziola K, et al (2013) Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J Nanomater 2013:60. https://doi.org/10.1155/2013/313081

    Article  Google Scholar 

  47. 47.

    Bhattacharjee S (2016) DLS and zeta potential - what they are and what they are not? J Control Release 235:337–351

    CAS  Article  Google Scholar 

  48. 48.

    Smith EF (1916) Studies on the crown gall of plants its relation to human cancer. J Cancer Res 1:231–309. https://doi.org/10.1158/jcr.1916.231

    Article  Google Scholar 

  49. 49.

    Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, Robertson DJ, Chandrasekhar M, Kannan R, Katti KV (2007) Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3:333–341. https://doi.org/10.1002/smll.200600427

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Brown DH, McKinlay GC, Smith WE (1979) The electronic spectra of some gold(III) complexes. Inorg Chim Acta 32:117–121. https://doi.org/10.1016/S0020-1693(00)91648-7

    CAS  Article  Google Scholar 

  51. 51.

    Swarbrick J (1996) Encyclopedia of pharmaceutical technology. Pharm Technol 3:2004–2020. https://doi.org/10.1081/E-EPT-100001065

    Article  Google Scholar 

  52. 52.

    Philip A, Philip B (2010) Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J 25:70–78. https://doi.org/10.5001/omj.2010.24

    Article  Google Scholar 

  53. 53.

    Iqbal MS, Taqi SG, Arif M, Wasim M, Sher M (2009) In vitro distribution of gold in serum proteins after incubation of sodium aurothiomalate and auranofin with human blood and its pharmacological significance. Biol Trace Elem Res 130:204–209. https://doi.org/10.1007/s12011-009-8330-0

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Israel L, Edelstein R, Mannoni P, Radot E, Greenspan EM (1977) Plasmapheresis in patients with disseminated cancer: clinical results and correlation with changes in serum protein. The concept of “nonspecific blocking factors.”. Cancer 40:3146–3154. https://doi.org/10.1002/1097-0142(197712)40:6<3146::AID-CNCR2820400659>3.0.CO;2-N

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Robyt JF (1998) Essentials of carbohydrate chemistry. Springer Science & Business Media, Berlin

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad S. Iqbal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval for Use of Human Blood and Animals

The study protocols regarding use of human blood and animals were reviewed and approved by the Institutional Review Board of Forman Christian College Lahore. Written informed consent was obtained from the blood donors (healthy human adults). Guidelines provided in Good Clinical Practice by ICH, World Medical Association Declaration of Helsinki and APA Committee on Animal Research and Ethics (CARE), USA, were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article unfortunately contained a mistake. The correct title should be “Synthesis and Biodistribution Study of Biocompatible 198Au Nanoparticles by use of Arabinoxylan as Reducing and Stabilizing Agent”.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iram, F., Iqbal, M.S., Khan, I.U. et al. Synthesis and Biodistribution Study of Biocompatible 198Au Nanoparticles by use of Arabinoxylan as Reducing and Stabilizing Agent. Biol Trace Elem Res 193, 282–293 (2020). https://doi.org/10.1007/s12011-019-01700-y

Download citation

Keywords

  • Hemicelluloses
  • Arabinoxylan
  • Gold nanoparticles
  • Targeted delivery
  • Radioactive gold nanoparticles