Skip to main content
Log in

Disulfiram and Its Copper Chelate Attenuate Cisplatin-Induced Acute Nephrotoxicity in Rats Via Reduction of Oxidative Stress and Inflammation

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The use of cisplatin (CP) in chemotherapy of resistant cancers is limited due to its dose-dependent nephrotoxicity. Disulfiram (DSF), the aversion therapy for alcoholism, has recently emerged as an anticancer and chemopreventive agent. Its anticancer activity is potentiated in the presence of copper. However, such use of copper leads to several adverse effects. In the present study, the protective effect of DSF and its copper chelate (Cu-DEDC) against CP-induced nephrotoxicity in rats was evaluated. Nephrotoxicity was induced by a single intraperitoneal injection of CP (5 mg/kg). The treatment groups included control (vehicle treated), CP (CP-treated), CP + DSF (CP followed by DSF), CP + DSF + Cu (CP followed by DSF and CuCl2), CP + Cu-DEDC (CP followed by Cu-DEDC), and CP + AMF (amifostine pre-treated and CP-treated). The DSF, Cu-DEDC, and CuCl2 were administered orally at 50 mM/kg/day dose for 5 days post CP injection. AMF served as a standard chemo protectant, administered intravenously 30 min prior to CP. The markers of oxidative stress, inflammation, and kidney function estimated on the 6th day revealed that both DSF and Cu-DEDC significantly attenuated the CP-induced rise in the serum/urine creatinine and blood urea nitrogen (BUN). The CP-induced rise in serum alkaline phosphatase (ALPase) was reversed by these drugs. Both drugs reduced the levels of malondialdehyde and nitric oxide (NO) in kidney tissues. These drugs reversed CP-induced depletion of SOD, catalase, and GSH in the kidneys. There was a significant reduction in the CP-induced TNF-α and IL-1β production along with prevention of histological alterations. Above observations indicate that DSF and Cu-DEDC may have significance as adjuvants to protect against CP-induced nephrotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ekborn A, Lindberg A, Laurell G, Wallin I, Eksborg S, Ehrsson H (2003) Ototoxicity, nephrotoxicity and pharmacokinetics of cisplatin and its monohydrated complex in the Guinea pig. Canc Chemotherap Pharmacol 51(1):36–42

    CAS  Google Scholar 

  2. Iraz M, Kalcioglu MT, Kizilay A, Karatas E (2005) Aminoguanidine prevents ototoxicity induced by cisplatin in rats. Ann Clin Lab Sci 35(3):329–335

    PubMed  CAS  Google Scholar 

  3. Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334(2):115–124

    PubMed  Google Scholar 

  4. Guo Y, Wang M, Mou J, Zhao Z, Yang J, Zhu F, Pei G, Zhu H, Wang Y, Xu G (2018) Pretreatment of Huaiqihuang extractum protects against cisplatin-induced nephrotoxicity. Sci Rep 8(1):7333

    PubMed  PubMed Central  Google Scholar 

  5. Brewer C, Streel E, Skinner M (2017) Supervised disulfiram’s superior effectiveness in alcoholism treatment: ethical, methodological, and psychological aspects. Alcohol Alcohol 52(2):213–219

    PubMed  Google Scholar 

  6. Jiao Y, N Hannafon B, Ding W-Q (2016) Disulfiram’s anticancer activity: evidence and mechanisms. Anti-Canc Agent Med Chem (Formerly Curr Med Chem-Anti-Can Agent) 16(11):1378–1384

    CAS  Google Scholar 

  7. Cheriyan VT, Wang Y, Muthu M, Jamal S, Chen D, Yang H, Polin LA, Tarca AL, Pass HI, Dou QP (2014) Disulfiram suppresses growth of the malignant pleural mesothelioma cells in part by inducing apoptosis. PLoS One 9(4):e93711

    PubMed  PubMed Central  Google Scholar 

  8. Allensworth JL, Evans MK, Bertucci F, Aldrich AJ, Festa RA, Finetti P, Ueno NT, Safi R, McDonnell DP, Thiele DJ (2015) Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor efficacy in inflammatory breast cancer. Mol Oncol 9(6):1155–1168

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Lewis DJ, Deshmukh P, Tedstone AA, Tuna F, O'Brien P (2014) On the interaction of copper (II) with disulfiram. Chem Commun 50(87):13334–13337

    CAS  Google Scholar 

  10. Navrátilová J, Jungová P, Vanhara P, Preisler J, Kanicky V, Smarda J (2009) Copper ions regulate cytotoxicity of disulfiram to myeloid leukemia cells. Int J Mol Med 24(5):661–670

    PubMed  Google Scholar 

  11. Mitra S, Keswani T, Dey M, Bhattacharya S, Sarkar S, Goswami S, Ghosh N, Dutta A, Bhattacharyya A (2012) Copper-induced immunotoxicity involves cell cycle arrest and cell death in the spleen and thymus. Toxicol 293(1–3):78–88

    CAS  Google Scholar 

  12. Keswani T, Mitra S, Bhattacharyya A (2015) Copper-induced immunotoxicity involves cell cycle arrest and cell death in the liver. Environ Toxicol 30(4):411–421

    PubMed  CAS  Google Scholar 

  13. Agarwal K, Sharma A, Talukder G (1990) Clastogenic effects of copper sulphate on the bone marrow chromosomes of mice in vivo. Mut Res Lett 243(1):1–6

    CAS  Google Scholar 

  14. Stewart DJ, Verma S, Maroun JA (1987) Phase I study of the combination of disulfiram with cisplatin. Am J Clin Oncol 10(6):517–519

    PubMed  CAS  Google Scholar 

  15. Weijl N, Elsendoorn T, Lentjes E, Hopman G, Wipkink-Bakker A, Zwinderman A, Cleton F, Osanto S (2004) Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind, placebo-controlled study. Euro J Cancer 40(11):1713–1723

    CAS  Google Scholar 

  16. Verma S, Stewart DJ, Maroun JA, Nair RC (1990) A randomized phase II study of cisplatin alone versus cisplatin plus disulfiram. Am J Clin Oncol 13(2):119–124

    PubMed  CAS  Google Scholar 

  17. Fujie T, Murakami M, Yoshida E, Tachinami T, Shinkai Y, Fujiwara Y, Yamamoto C, Kumagai Y, Naka H, Kaji T (2016) Copper diethyldithiocarbamate as an activator of Nrf2 in cultured vascular endothelial cells. JBIC. J Biol Inorg Chem 21(2):263–273

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Ilić S, Stojiljković N, Veljković M, Veljković S, Stojanović G (2014) Protective effect of quercetin on cisplatin-induced nephrotoxicity in rats. Facta Univ Ser Med Biol 16(2):71–75

    Google Scholar 

  19. Bami E, Ozakpınar OB, Ozdemir-Kumral ZN, Köroglu K, Ercan F, Cirakli Z, Sekerler T, Izzettin FV, Sancar M, Okuyan B (2017) Protective effect of ferulic acid on cisplatin induced nephrotoxicity in rats. Environment Toxicol Pharmacol 54:105–111

    CAS  Google Scholar 

  20. Shirwaikar A, Issac D, Malini S (2004) Effect of Aerva lanata on cisplatin and gentamicin models of acute renal failure. J Ethnopharmacol 90(1):81–86

    PubMed  Google Scholar 

  21. Harlalka GV, Patil CR, Patil MR (2007) Protective effect of Kalanchoe pinnata pers.(Crassulaceae) on gentamicin-induced nephrotoxicity in rats. Ind J Pharmacol 39(4):201

    Google Scholar 

  22. Li W, Yan M-H, Liu Y, Liu Z, Wang Z, Chen C, Zhang J, Sun Y-S (2016) Ginsenoside Rg5 ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of inflammation, oxidative stress, and apoptosis. Nutrient 8(9):566

    Google Scholar 

  23. Chaudhary G, Mahajan UB, Goyal SN, Ojha S, Patil CR, Subramanya SB (2017) Protective effect of Lagerstroemia speciosa against dextran sulfate sodium induced ulcerative colitis in C57BL/6 mice. Am J Transl Res 9(4):1792–1800

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Borch RF, Pleasants ME (1979) Inhibition of cis-platinum nephrotoxicity by diethyldithiocarbamate rescue in a rat model. Proc Natl Acad Sci 76(12):6611–6614

    PubMed  CAS  Google Scholar 

  25. Avi-Dor Y, Lipkin R (1958) A spectrophotometric method for the determination of reduced glutathione. J Biol Chem 233(1):69–72

    PubMed  CAS  Google Scholar 

  26. Gore PR, Prajapati CP, Mahajan UB, Goyal SN, Belemkar S, Ojha S, Patil CR (2016) Protective effect of thymoquinone against cyclophosphamide-induced hemorrhagic cystitis through inhibiting DNA damage and upregulation of Nrf2 expression. Int J Biol Sci 12(8):944–953

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Aswar M, Kute P, Mahajan S, Mahajan U, Nerurkar G, Aswar U (2014) Protective effect of hesperetin in rat model of partial sciatic nerve ligation induced painful neuropathic pain: an evidence of anti-inflammatory and anti-oxidative activity. Pharmacol Biochem Behav 124:101–107

    PubMed  CAS  Google Scholar 

  28. Nicolás P, Lassalle VL, Ferreira ML (2017) Quantification of immobilized Candida antarctica lipase B (CALB) using ICP-AES combined with Bradford method. Enzym Microb Tech 97:97–103

    Google Scholar 

  29. Pezeshki Z, Khosravi A, Nekuei M, Khoshnood S, Zandi E, Eslamian M, Talebi A (2017) Time course of cisplatin-induced nephrotoxicity and hepatotoxicity. J Nephropath 6(3):163–167

    Google Scholar 

  30. Sherif IO (2015) Amelioration of cisplatin-induced nephrotoxicity in rats by triterpenoid saponin of Terminalia arjuna. Clin Exp Nephrol 19(4):591–597

    PubMed  CAS  Google Scholar 

  31. Alhoshani AR, Hafez MM, Husain S, Al-sheikh AM, Alotaibi MR, Al Rejaie SS, Alshammari MA, Almutairi MM, Al-Shabanah OA (2017) Protective effect of rutin supplementation against cisplatin-induced nephrotoxicity in rats. BMC Nephrol 18(1):194

    PubMed  PubMed Central  Google Scholar 

  32. Zhang Y, Tao X, Yin L, Xu L, Xu Y, Qi Y, Han X, Song S, Zhao Y, Lin Y (2017) Protective effects of dioscin against cisplatin-induced nephrotoxicity via the microRNA-34a/sirtuin 1 signalling pathway. Br J Pharmacol 174(15):2512–2527

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Vasaikar N, Mahajan U, Patil KR, Suchal K, Patil CR, Ojha S, Goyal SN (2018) D-pinitol attenuates cisplatin-induced nephrotoxicity in rats: impact on pro-inflammatory cytokines. Chem Biol Interact 290:6–11

    PubMed  CAS  Google Scholar 

  34. Akca G, Eren H, Tumkaya L, Mercantepe T, Horsanali MO, Deveci E, Dil E, Yilmaz A (2018) The protective effect of astaxanthin against cisplatin-induced nephrotoxicity in rats. Biomed Pharmacother 100:575–582

    PubMed  CAS  Google Scholar 

  35. Domitrovic R, Cvijanovic O, Susnic V, Katalinic N (2014) Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury. Toxicol 324:98–107

    CAS  Google Scholar 

  36. Malik S, Suchal K, Gamad N, Dinda AK, Arya DS, Bhatia J (2015) Telmisartan ameliorates cisplatin-induced nephrotoxicity by inhibiting MAPK mediated inflammation and apoptosis. Eur J Pharmacol 748:54–60

    PubMed  CAS  Google Scholar 

  37. Li Y, Fu SY, Wang LH, Wang FY, Wang NN, Cao Q, Wang YT, Yang JY, Wu CF (2015) Copper improves the anti-angiogenic activity of disulfiram through the EGFR/Src/VEGF pathway in gliomas. Canc Lett 369(1):86–96

    CAS  Google Scholar 

  38. Owunari GU, Minakiri SI (2014) Disulfiram and copper gluconate in cancer chemotherapy; a review of the literature. Can Res J 2(5):88–92

    CAS  Google Scholar 

  39. Tai Z, Cai L, Dai L, Dong L, Wang M, Yang Y, Cao Q, Ding Z (2011) Antioxidant activity and chemical constituents of edible flower of Sophora viciifolia. Food Chem 126(4):1648–1654

    PubMed  CAS  Google Scholar 

  40. Niki E (2010) Assessment of antioxidant capacity in vitro and in vivo. Free Radic Biol Med 49(4):503–515

    PubMed  CAS  Google Scholar 

  41. Al-Kahtani MA, Abdel-Moneim AM, Elmenshawy OM, El-Kersh MA (2014) Hemin attenuates cisplatin-induced acute renal injury in male rats. Oxid Med Cell Long:2014

  42. Amirshahrokhi K, Khalili A-R (2015) Thalidomide ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in an experimental model. Inflam 38(2):476–484

    CAS  Google Scholar 

  43. Motamedi F, Nematbakhsh M, Monajemi R, Pezeshki Z, Talebi A, Zolfaghari B, Mansoori A, Saberi S, Dehghani A, Ashrafi F (2014) Effect of pomegranate flower extract on cisplatin-induced nephrotoxicity in rats. J Nephropath 3(4):133

    Google Scholar 

  44. Korhonen R, Lahti A, Kankaanranta H, Moilanen E (2005) Nitric oxide production and signaling in inflammation. Curr Drug Target Inflam Allerg 4(4):471–479

    CAS  Google Scholar 

  45. Kuhad A, Tirkey N, Pilkhwal S, Chopra K (2006) 6-Gingerol prevents cisplatin-induced acute renal failure in rats. Biofact 26(3):189–200

    CAS  Google Scholar 

  46. Srivastava R, Farookh A, Ahmad N, Misra M, Hasan S, Husain M (1996) Evidence for the involvement of nitric oxide in cisplatin-induced toxicity in rats. Biomet 9(2):139–142

    CAS  Google Scholar 

  47. Jung M, Hotter G, Viñas JL, Sola A (2009) Cisplatin upregulates mitochondrial nitric oxide synthase and peroxynitrite formation to promote renal injury. Toxicol Appl Pharmacol 234(2):236–246

    PubMed  CAS  Google Scholar 

  48. Chirino YI, Trujillo J, Sánchez-González DJ, Martínez-Martínez CM, Cruz C, Bobadilla NA, Pedraza-Chaverri J (2008) Selective iNOS inhibition reduces renal damage induced by cisplatin. Toxicol Lett 176(1):48–57

    PubMed  CAS  Google Scholar 

  49. Lee KW, Jeong JY, Lim BJ, Chang Y-K, Lee S-J, Na K-R, Shin Y-T, Choi DE (2009) Sildenafil attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity. Toxicology 257(3):137–143

    PubMed  CAS  Google Scholar 

  50. Kodama A, Watanabe H, Tanaka R, Kondo M, Chuang VTG, Wu Q, Endo M, Ishima Y, Fukagawa M, Otagiri M (2014) Albumin fusion renders thioredoxin an effective anti-oxidative and anti-inflammatory agent for preventing cisplatin-induced nephrotoxicity. BBA Gen Subj 1840(3):1152–1162

    CAS  Google Scholar 

  51. Ali BH, Abdelrahman AM, Al-Salam S, Sudhadevi M, AlMahruqi AS, Al-Husseni IS, Beegam S, Dhanasekaran S, Nemmar A, Al-Moundhri M (2011) The effect of sildenafil on cisplatin nephrotoxicity in rats. Bas Clin Pharmacol Toxicol 109(4):300–308

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandragouda R. Patil.

Ethics declarations

Experimental procedures involving the use of laboratory animals were approved (protocol approval no. IAEC/CPCSEA/RCPIPER/2017-15) by the Institutional Animal Ethics Committee (IAEC) of the R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule (M.S.), India (reg. no. 651/PO/ReBi/S/02/CPCSEA) constituted under the “Prevention of Cruelty to the Animals Act- 1960.” All the experiments were carried out according to the guidelines prescribed by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khairnar, S.I., Mahajan, U.B., Patil, K.R. et al. Disulfiram and Its Copper Chelate Attenuate Cisplatin-Induced Acute Nephrotoxicity in Rats Via Reduction of Oxidative Stress and Inflammation. Biol Trace Elem Res 193, 174–184 (2020). https://doi.org/10.1007/s12011-019-01683-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01683-w

Keywords

Navigation