Skip to main content

Advertisement

Log in

Deficiency but Not Supplementation of Selenium Impairs the Hippocampal Long-Term Potentiation and Hippocampus-Dependent Learning

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Among the chemical factors that have been implicated in the etiology of dementia, recent concern has focused on both increased and decreased exposure to the metalloid selenium (Se). This report describes the molecular, behavioral, and electrophysiological analysis of rats that were fed with Se-free chow and Se-enriched tap water for 21 days. Three groups were produced, feeding them on a deficient diet with different Selenium content. Hippocampus-dependent spatial learning was measured using the water maze. Long-term potentiation (LTP) was recorded in the hippocampal dentate gyrus to assess how memory is formed at the cellular level. Hippocampal Se levels were measured in trained rats by using inductively coupled plasma mass spectrometry. Phosphorylated and total tau levels were measured in whole hippocampus by Western blot. An impairment of learning of rats feeding with Se-deficient diet was accompanied by attenuated LTP, and increased ratio of p231Tau-to- and decreased ratio of p416Tau-to-Tau in the non-stimulated hippocampus, despite no significant change was observed in Se levels of hippocampus and plasma. Se supplementation resulted in an increase in both tissues and an increase in the ratio of p231Tau-to-Tau in the non-stimulated hippocampus but did not change learning performance and LTP. Despite impaired learning and LTP, no group differed in probe trial and in the fraction of phosphorylated tau in LTP-induced hippocampus. Reduced level of selenium would probably result in reduced synaptic plasticity as well as impairment of learning ability, suggesting requirement of Se for normal synaptic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer’s disease. Brain Pathol 9(1):133–146

    Article  CAS  PubMed  Google Scholar 

  2. Gilgun-Sherki Y, Melamed E, Offen D (2004) The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 251(3):261–268

    Article  CAS  PubMed  Google Scholar 

  3. Baillet A et al (2010) The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson's disease. Neurochem Res 35(10):1530–1537

    Article  CAS  PubMed  Google Scholar 

  4. Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Park Dis 3(4):461–491

    CAS  Google Scholar 

  5. Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxidative Med Cell Longev 2013:316523

    Google Scholar 

  6. Du X, Wang C, Liu Q (2016) Potential roles of selenium and Selenoproteins in the prevention of Alzheimer’s disease. Curr Top Med Chem 16(8):835–848

    Article  CAS  PubMed  Google Scholar 

  7. Hurtado DE et al (2010) A{beta} accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer mouse model. Am J Pathol 177(4):1977–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vossel KA et al (2010) Tau reduction prevents Abeta-induced defects in axonal transport. Science 330(6001):198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vossel KA et al (2015) Tau reduction prevents Abeta-induced axonal transport deficits by blocking activation of GSK3beta. J Cell Biol 209(3):419–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maphis N et al (2015) Loss of tau rescues inflammation-mediated neurodegeneration. Front Neurosci 9:196

    Article  PubMed  PubMed Central  Google Scholar 

  11. Song G et al (2014) Selenomethionine ameliorates cognitive decline, reduces tau hyperphosphorylation, and reverses synaptic deficit in the triple transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 41(1):85–99

    Article  CAS  PubMed  Google Scholar 

  12. Liu SJ et al (2016) Sodium selenate retards epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2A and hyperphosphorylated tau. Brain 139(Pt 7):1919–1938

    Article  PubMed  Google Scholar 

  13. Harr JR (1967) Selenium toxicity in Rats II. Histopathology. In: Muth OH et al (eds) Selenium in biomedicine. AVI Publishing Co. Inc., Westport, p 153–178

  14. Vinceti M et al (2010) Possible involvement of overexposure to environmental selenium in the etiology of amyotrophic lateral sclerosis: a short review. Ann Ist Super Sanita 46:279–283

    PubMed  Google Scholar 

  15. Rasekh HR et al (1997) The effect of selenium on the central dopaminergic system: a microdialysis study. Life Sci 61(11):1029–1035

    Article  CAS  PubMed  Google Scholar 

  16. Estevez AO et al (2012) Selenium induces cholinergic motor neuron degeneration in Caenorhabditis elegans. Neurotoxicology 33(5):1021–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ardais AP et al (2010) Acute treatment with diphenyl diselenide inhibits glutamate uptake into rat hippocampal slices and modifies glutamate transporters, SNAP-25, and GFAP immunocontent. Toxicol Sci 113(2):434–443

    Article  CAS  PubMed  Google Scholar 

  18. Souza AC et al (2010) Diphenyl diselenide and diphenyl ditelluride: neurotoxic effect in brain of young rats, in vitro. Mol Cell Biochem 340(1–2):179–185

    Article  CAS  PubMed  Google Scholar 

  19. Tsien JZ, Huerta PT, Tonegawa S (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87(7):1327–1338

    Article  CAS  PubMed  Google Scholar 

  20. Rogan MT, Staubli UV, LeDoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390(6660):604–607

    Article  CAS  PubMed  Google Scholar 

  21. Burk RF, Hill KE (2009) Selenoprotein P—expression, functions, and roles in mammals. Biochim Biophys Acta Gen Subj 1790(11):1441–1447

    Article  CAS  Google Scholar 

  22. Peters MM et al (2006) Altered hippocampus synaptic function in selenoprotein P deficient mice. Mol Neurodegener 1(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Watanabe C, Satoh H (1995) Effects of prolonged selenium deficiency on open field behavior and Morris water maze performance in mice. Pharmacol Biochem Behav 51(4):747–752

    Article  CAS  PubMed  Google Scholar 

  24. Abel T et al (2013) Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol 23(17):R774–R788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Artis A et al (2012) Experimental hypothyroidism delays field excitatory post-synaptic potentials and disrupts hippocampal long-term potentiation in the dentate gyrus of hippocampal formation and Y-maze performance in adult rats. J Neuroendocrinol 24(3):422–433

    Article  CAS  PubMed  Google Scholar 

  26. Burk RF et al (2014) Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. FASEB J 28(8):3579–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kesse-Guyot E et al (2011) French adults’ cognitive performance after daily supplementation with antioxidant vitamins and minerals at nutritional doses: a post hoc analysis of the supplementation in vitamins and mineral antioxidants (SU. VI. MAX) trial. Am J Clin Nutr 94(3):892–899

    Article  CAS  PubMed  Google Scholar 

  28. Scheltens P et al (2010) Efficacy of a medical food in mild Alzheimer's disease: a randomized, controlled trial. Alzheimers Dement 6(1):1–10. e1

    Article  CAS  PubMed  Google Scholar 

  29. Cardoso BR et al (2015) Selenium, selenoproteins and neurodegenerative diseases. Metallomics 7(8):1213–1228

    Article  CAS  PubMed  Google Scholar 

  30. Bitiktaş S et al (2016) Effects of selenium treatment on 6-n-propyl-2-thiouracil-induced impairment of long-term potentiation. Neurosci Res 109:70–76

    Article  PubMed  CAS  Google Scholar 

  31. van Eersel J et al (2010) Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer’s disease models. Proc Natl Acad Sci U S A 107(31):13888–13893

    Article  PubMed  PubMed Central  Google Scholar 

  32. Corcoran NM et al (2010) Sodium selenate specifically activates PP2A phosphatase, dephosphorylates tau and reverses memory deficits in an Alzheimer’s disease model. J Clin Neurosci 17(8):1025–1033

    Article  CAS  PubMed  Google Scholar 

  33. Jones NC et al (2012) Targeting hyperphosphorylated tau with sodium selenate suppresses seizures in rodent models. Neurobiol Dis 45(3):897–901

    Article  CAS  PubMed  Google Scholar 

  34. Shultz SR et al (2015) Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury. Brain 138(5):1297–1313

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gong CX, Iqbal K (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr Med Chem 15(23):2321–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamamoto H et al (2005) Phosphorylation of tau at serine 416 by Ca2+/calmodulin-dependent protein kinase II in neuronal soma in brain. J Neurochem 94(5):1438–1447

    Article  CAS  PubMed  Google Scholar 

  37. Alonso AD (2010) Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration. J Biol Chem 285:30851–30860

    Article  CAS  Google Scholar 

  38. Zheng SF et al (2019) Hydrogen sulfide exposure induces jejunum injury via CYP450s/ROS pathway in broilers. Chemosphere 214:25–34

    Article  CAS  PubMed  Google Scholar 

  39. Wang S et al (2018) Atrazine hinders PMA-induced neutrophil extracellular traps in carp via the promotion of apoptosis and inhibition of ROS burst, autophagy and glycolysis. Environ Pollut 243(Pt A):282–291

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2:12

    PubMed  PubMed Central  Google Scholar 

  41. Federico A et al (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322(1–2):254–262

    Article  CAS  PubMed  Google Scholar 

  42. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23(1):134–147

    Article  CAS  PubMed  Google Scholar 

  43. Davies KM et al (2014) Copper pathology in vulnerable brain regions in Parkinson’s disease. Neurobiol Aging 35(4):858–866

    Article  CAS  PubMed  Google Scholar 

  44. Kamsler A, Segal M (2003) Hydrogen peroxide modulation of synaptic plasticity. J Neurosci 23(1):269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brauer AU, Savaskan NE (2004) Molecular actions of selenium in the brain: neuroprotective mechanisms of an essential trace element. Rev Neurosci 15(1):19–32

    Article  PubMed  Google Scholar 

  46. Jin X et al (2018) The antagonistic effect of selenium on cadmium-induced apoptosis via PPAR-gamma/PI3K/Akt pathway in chicken pancreas. J Hazard Mater 357:355–362

    Article  CAS  PubMed  Google Scholar 

  47. Metes-Kosik N et al (2012) Both selenium deficiency and modest selenium supplementation lead to myocardial fibrosis in mice via effects on redox-methylation balance. Mol Nutr Food Res 56(12):1812–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Behne D, Wolters W (1983) Distribution of selenium and glutathione peroxidase in the rat. J Nutr 113(2):456–461

    Article  CAS  PubMed  Google Scholar 

  49. Nakayama A et al (2007) All regions of mouse brain are dependent on selenoprotein P for maintenance of selenium. J Nutr 137(3):690–693

    Article  CAS  PubMed  Google Scholar 

  50. Burk RF et al (1991) Response of rat Selenoprotein-P to selenium administration and fate of its selenium. Am J Phys 261(1):E26–E30

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Erciyes University Research Fund (TCD-2016-6262).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurcan Dursun.

Ethics declarations

Experiments were conducted in adult male Wistar rats between the ages of 2 and 3 months in accordance with the European Communities Council Directive of 24 November 1986 (86/609/EEC) regarding the protection of animals used for experimental purposes and the guiding principles for the care and use of laboratory animals approved by the Institutional Ethics Committee on Care of Erciyes University (14/010).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babür, E., Tan, B., Yousef, M. et al. Deficiency but Not Supplementation of Selenium Impairs the Hippocampal Long-Term Potentiation and Hippocampus-Dependent Learning. Biol Trace Elem Res 192, 252–262 (2019). https://doi.org/10.1007/s12011-019-01666-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01666-x

Keywords

Navigation