Selenium Attenuates Staphylococcus aureus Mastitis in Mice by Inhibiting the Activation of the NALP3 Inflammasome and NF-κB/MAPK Pathway

  • Junkun Ma
  • Shuo Zhu
  • Yingfang Guo
  • Meilin Hao
  • Yu Chen
  • Ying Wang
  • Mei Yang
  • Jianguo Chen
  • Mengyao GuoEmail author


Mastitis is one of the most important diseases affecting the dairy industry in the world, and it also poses a great threat to human food safety. In this study, we explored whether selenium can inhibit the activation of the NALP3 inflammasome and NF-κB/MAPK pathway to achieve anti-inflammatory effects. Sixty BALB/c female mice were randomly divided into three groups according to diets of different selenium concentrations (high, normal, and low). After 90 days, mice fed the same selenium concentration were randomly divided into two smaller groups, one of which was inoculated with Staphylococcus aureus and the other injected with saline as a control. Through histopathologic examination staining, western blot, qPCR, and ELISA, the results showed that with increasing selenium concentrations, the expression levels of IL-1β, TNF-α, NALP3, caspase-1, and ASC were decreased in mouse mammary tissue. Therefore, this study revealed that selenium can attenuate S. aureus mastitis by inhibiting the activation of the NALP3 inflammasome and NF-κB/MAPK pathway.


Selenium Mastitis S. aureus NALP3 inflammasome Inflammation 


Funding information

This work was supported by the National Natural Science Foundation of China (NO.31502130), the Da Bei Nong Group Promoted Project for Young Scholar of HZAU (Grant No. 2017DBN002 the Fundamental Research Funds for the Center Universities (Program NO.2017BC005), and the National Natural Science Foundation of Hubei province (NO. 2016CFB435),

Compliance with Ethical Standards

Ethical Approval

All experimental procedures were conducted with the approval of the Institutional Animal Care and Use Committee of Huazhong Agricultural University (20170819).

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hameed KGA, Sender G, Korwinkossakowska A (2007) Public health hazard due to mastitis in dairy cows. Anim Sci Paper Rep 25:73–85Google Scholar
  2. 2.
    Alluwaimi AM, Leutenegger CM, Farver TB et al (2010) The cytokine markers in Staphylococcus aureus mastitis of bovine mammary gland. Zoonoses Public Health 50:105–111Google Scholar
  3. 3.
    Burvenich C, Van MV, Mehrzad J et al (2003) Severity of E. coli mastitis is mainly determined by cow factors. Vet Res 34:521–564CrossRefPubMedGoogle Scholar
  4. 4.
    Seegers H, Fourichon C, Beaudeau F (2003) Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res 34:475–491CrossRefPubMedGoogle Scholar
  5. 5.
    Smith AD, Cheung L, Beshah E et al (2013) Selenium status alters the immune response and expulsion of adult Heligmosomoides bakeri worms in mice. Infect Immun 81:2546–2553Google Scholar
  6. 6.
    Lippman SM, Goodman PJ, Klein EA, Parnes HL, Thompson IM, Kristal AR, Santella RM, Probstfield JL, Moinpour CM, Albanes D, Taylor PR, Minasian LM, Hoque A, Thomas SM, Crowley JJ, Gaziano JM, Stanford JL, Cook ED, Fleshner NE, Lieber MM, Walther PJ, Khuri FR, Karp DD, Schwartz GG, Ford LG, Coltman CA (2005) Designing the selenium and vitamin E cancer prevention trial (SELECT). J Natl Cancer Inst 97:94–102CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang Z, Guo Y, Qiu C, Deng G, Guo M (2017) Protective action of Se-supplement against acute alcoholism is regulated by selenoprotein P (SelP) in the liver. Biol Trace Elem Res 175:375–387CrossRefPubMedGoogle Scholar
  8. 8.
    Gao X, Zhang Z, Li Y, Shen P, Hu X, Cao Y, Zhang N (2016) Selenium deficiency facilitates inflammation following S. aureus infection by regulating TLR2-related pathways in the mouse mammary gland. Biol Trace Elem Res 172:449–457CrossRefPubMedGoogle Scholar
  9. 9.
    Vunta H, Belda BJ, Arner RJ et al (2010) Selenium attenuates pro-inflammatory gene expression in macrophages. Mol Nutr Food Res 52:1316–1323CrossRefGoogle Scholar
  10. 10.
    Zhang W, Zhang R, Wang T, Jiang H, Guo M, Zhou E, Sun Y, Yang Z, Xu S, Cao Y, Zhang N (2014) Selenium inhibits LPS-induced pro-inflammatory gene expression by modulating MAPK and NF-κB signaling pathways in mouse mammary epithelial cells in primary culture. Inflammation 37:478–485CrossRefPubMedGoogle Scholar
  11. 11.
    Yang H, Fang J, Jia X, Han C, Chen X, Yang CS, Li N (2011) Chemopreventive effects of early-stage and late-stage supplementation of vitamin E and selenium on esophageal carcinogenesis in rats maintained on a low vitamin E/selenium diet. Carcinogenesis 32:381–388CrossRefPubMedGoogle Scholar
  12. 12.
    Hogan JS, Weiss WP, Smith KL (1993) Role of vitamin E and selenium in host defense against mastitis. J Dairy Sci 76:2795–2803CrossRefPubMedGoogle Scholar
  13. 13.
    Netea MG, Meer JWMVD, Kullberg BJ (2010) Role of the dual interaction of fungal pathogens with pattern recognition receptors in the activation and modulation of host defence. Clin Microbiol Infect 12:404–409CrossRefGoogle Scholar
  14. 14.
    Yang W, Zerbe H, Petzl W, Brunner RM, Günther J, Draing C, von Aulock S, Schuberth HJ, Seyfert HM (2008) Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder. Mol Immunol 45:1385–1397CrossRefPubMedGoogle Scholar
  15. 15.
    Sansonetti PJ, Phalipon A, Arondel J, Thirumalai K, Banerjee S, Akira S, Takeda K, Zychlinsky A (2000) Caspase-1 activation of IL-1β and IL-18 are essential for Shigella flexneri–induced inflammation. Immunity 12:581–590CrossRefGoogle Scholar
  16. 16.
    Kanneganti TD, Body-Malapel M, Amer A, Park JH, Whitfield J, Franchi L, Taraporewala ZF, Miller D, Patton JT, Inohara N, Núñez G (2006) Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 281:36560–36568CrossRefGoogle Scholar
  17. 17.
    Griffith JW, Sun T, Mcintosh MT et al (2009) Pure Hemozoin is inflammatory in vivo and activates the NALP3 inflammasome via release of uric acid. J Immunol 183:5208–5220CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nakahira K, Haspel JA, Rathinam VA et al. (2011) Autophagy proteins regulate innate immune response by inhibiting NALP3 inflammasome-mediated mitochondrial DAN release. In: American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. p A1077-A1077Google Scholar
  21. 21.
    Ferrero-Miliani L, Nielsen OH, Andersen PS et al (2010) Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 147:227–235Google Scholar
  22. 22.
    Satoh T, Kambe N, Matsue H (2013) NLRP3 activation induces ASC-dependent programmed necrotic cell death, which leads to neutrophilic inflammation. Cell Death Dis 4:e644CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rayman MP (2000) Selenium and human health: the lancet. Lancet 356:942–943Google Scholar
  24. 24.
    Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184:455–465CrossRefPubMedGoogle Scholar
  25. 25.
    Bi CL, Wang H, Wang YJ, Sun J, Dong JS, Meng X, Li JJ (2016) Selenium inhibits Staphylococcus aureus-induced inflammation by suppressing the activation of the NF-ΰB and MAPK signalling pathways in RAW264.7 macrophages. Eur J Pharmacol 780:159–165CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang HF, Zhao MG, Liang GB, Song ZQ, Li ZQ (2013) Expression of pro-inflammatory cytokines and the risk of intracranial aneurysm. Inflammation 36:1195–1200CrossRefPubMedGoogle Scholar
  27. 27.
    Chaudhry H, Zhou J, Zhong Y et al (2013) Role of cytokines as a double-edged sword in sepsis. Vivo 27:669Google Scholar
  28. 28.
    Próchnicki T, Mangan MS, Latz E (2016) Recent insights into the molecular mechanisms of the NLRP3inflammasome activation. F1000research 5:1469Google Scholar
  29. 29.
    Song C, He L, Zhang J, Ma H, Yuan X, Hu G, Tao L, Zhang J, Meng J (2016) Fluorofenidone attenuates pulmonary inflammation and fibrosis via inhibiting the activation of NALP3 inflammasome and IL-1β/IL-1R1/MyD88/NF-κB pathway. J Cell Mol Med 20:2064–2077CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225CrossRefPubMedGoogle Scholar
  31. 31.
    Komada T, Usui F, Kawashima A, Kimura H, Karasawa T, Inoue Y, Kobayashi M, Mizushina Y, Kasahara T, Taniguchi S’, Muto S, Nagata D, Takahashi M (2015) Role of NLRP3 inflammasomes for rhabdomyolysis-induced acute kidney injury. Sci Rep 5:10901CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Boraschi D, Tagliabue A (2013) The interleukin-1 receptor family. Vitam Horm 25:394–407Google Scholar
  33. 33.
    De Oliveira DC, Hastreiter AA, Mello AS et al (2014) The effects of protein malnutrition on the TNF-RI and NF-κB expression via the TNF-α signaling pathway. Cytokine 69:218–225CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Clinical Veterinary Medicine, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations