Skip to main content

Advertisement

Log in

Influence of Strontium on Vascular Endothelial Growth Factor and Fibroblast Growth Factor 2 Expression in Rat Chondrocytes Cultured In Vitro

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Strontium (Sr) can reduce cartilage degeneration and stimulate cartilage matrix formation. Angiogenesis plays a developmental role in chondrogenesis, and was stimulated by growth factors such as vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2). However, the direct influence of Sr on VEGF and FGF2 expressions in chondrocytes is not entirely clear. The objective of this study was to investigate the effects of different Sr concentrations on VEGF and FGF2 expressions in rat chondrocytes in vitro. Chondrocytes were isolated from Wistar rat articular by enzymatic digestion. As a Sr source, strontium chloride hexahydrate (SrCl2·6H2O) was added to the culture solution at final concentrations of 0, 0.5, 1.0, 2.0, 5.0, 20.0, and 100.0 μg/mL. After 72 h of continuous culture, mRNA abundance and protein expression levels of VEGF and FGF2 in the chondrocytes were determined by real-time polymerase chain reaction (real-time PCR) and Western blot, respectively. The results showed that VEGF and FGF2 expressions were dose-dependently elevated with Sr concentration in chondrocytes. The mRNA abundance and protein expression levels of VEGF were extremely significantly higher than those in the control group (P < 0.01) at 1.0 μg/mL Sr treatment. For FGF2, there were markedly significant differences in mRNA and protein expression from control group (P < 0.01) when the Sr-treated concentration exceeded 5.0 μg/mL and 20.0 μg/mL, respectively. These results indicated that Sr might involve in the cartilage angiogenesis via regulating expression of VEGF and FGF2z.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Bragdon B, Lam S, Aly S, Femia A, Clark A, Hussein A, Morgan EF, Gerstenfeld LC (2017) Earliest phases of chondrogenesis are dependent upon angiogenesis during ectopic bone formation in mice. Bone 101:49–61. https://doi.org/10.1016/j.bone.2017.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Garcia-Ramirez M, Toran N, Andaluz P, Carrascosa A, Audi L (2010) Vascular endothelial growth factor is expressed in human fetal growth cartilage. J Bone Miner Res 15(3):534–540. https://doi.org/10.1359/jbmr.2000.15.3.534

    Article  Google Scholar 

  3. Lee S, Che X, Jeong J, Choi J, Lee Y, Lee Y, Bae S, Lee Y (2012) Runx2 protein stabilizes hypoxia-inducible factor-1α through competition with von Hippel-Lindau protein (pVHL) and stimulates angiogenesis in growth plate hypertrophic chondrocytes. J Biol Chem 287(18):14760–14771. https://doi.org/10.1074/jbc.M112.340232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5(6):623–628. https://doi.org/10.1038/9467

    Article  CAS  PubMed  Google Scholar 

  5. Bluteau G, Julien M, Magne D, Mallein-Gerin F, Weiss P, Daculsi G, Guicheux J (2007) VEGF and VEGF receptors are differentially expressed in chondrocytes. Bone 40(3):568–576. https://doi.org/10.1016/j.bone.2006.09.024

    Article  CAS  PubMed  Google Scholar 

  6. Szu-Yu C, Huang CY, Chun-Hao T, Wang SW, Lin YM, Tang CH (2016) Interleukin-1β induces fibroblast growth factor 2 expression and subsequently promotes endothelial progenitor cell angiogenesis in chondrocytes. Clin Sci 130(9):667–681. https://doi.org/10.1042/CS20150622

    Article  CAS  Google Scholar 

  7. Karuppaiah K, Yu K, Lim J, Chen J, Smith C, Long F, Ornitz DM (2016) FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth. Development 143(10):1811–1822. https://doi.org/10.1242/dev.131722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Su N, Jin M, Chen L (2014) Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models. Bone Res 2:14003. https://doi.org/10.1038/boneres.2014.3

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vincent TL (2011) Fibroblast growth factor 2: good or bad guy in the joint? Arthritis Res Ther 13(5):127. https://doi.org/10.1186/ar3447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kong Y, Guo Y, Zhang J, Zhao B, Wang J (2017) Strontium promotes transforming growth factors β1 and β2 expression in rat chondrocytes cultured in vitro. Biol Trace Elem Res:1–6

  11. Ammann P (2006) Strontium ranelate: a physiological approach for an improved bone quality. Bone 38(2):15–18. https://doi.org/10.1007/s12011-017-1208-7

    Article  CAS  PubMed  Google Scholar 

  12. Kang P, Xie X, Tan Z, Yang J, Shen B, Zhou Z, Pei F (2015) Repairing defect and preventing collapse of femoral head in a steroid-induced osteonecrotic of femoral head animal model using strontium-doped calcium polyphosphate combined BM-MNCs. J Mater Sci Mater Med 26(2):80. https://doi.org/10.1007/s10856-015-5402-x

    Article  CAS  PubMed  Google Scholar 

  13. Lin W, Boda SK, Teusink MJ, Shuler FD, Li X, Xie J (2017) Binary doping of strontium and copper enhancing osteogenesis and angiogenesis of bioactive glass nanofibers while suppressing osteoclast activity. ACS Appl Mater Interfaces 9(29):24484–24496. https://doi.org/10.1021/acsami.7b06521

    Article  CAS  Google Scholar 

  14. Wang J, Zhu X, Liu L, Shi X, Yin L, Zhang Y, Li X, Wang Z, Liu G (2013) Effects of strontium on collagen content and expression of related genes in rat chondrocytes cultured in vitro. Biol Trace Elem Res 153(1–3):212–219. https://doi.org/10.1007/s12011-013-9640-9

    Article  CAS  PubMed  Google Scholar 

  15. Verberckmoes S, Brobe M, D'Haese P (2003) Dose-dependent effects of strontium on osteoblast function and mineralization. Kidney Int 64(2):534–543. https://doi.org/10.1046/j.1523-1755.2003.00123.x

    Article  CAS  PubMed  Google Scholar 

  16. Zarins J, Pilmane M, Sidhoma E, Salma I (2017) Does local application of strontium increase osteogenesis and biomaterial osteointegration in osteoporotic and other bone tissue conditions: review of literature. Acta Chir Lat 16(2). https://doi.org/10.1515/chilat-2017-0004

  17. Wang X, Wang Y, Li L, Gu Z, Xie H, Yu X (2014) Stimulations of strontium-doped calcium polyphosphate for bone tissue engineering to protein secretion and mRNA expression of the angiogenic growth factors from endothelial cells in vitro. Ceram Int 40(5):6999–7005

    Article  CAS  Google Scholar 

  18. Zhao F, Lei B, Li X, Mo Y, Wang R, Chen D, Chen X (2018) Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials 178:36–47. https://doi.org/10.1016/j.biomaterials.2018.06.004

  19. Ma FB, Liu N, Hu N, Wen CY, Tang B (2017) Synthesis of strontium chondroitin sulfate and the evaluation of its capability to attenuate osteoarthritis. Carbohydr Polym 170:217–225. https://doi.org/10.1016/j.carbpol.2017.04.067

    Article  CAS  PubMed  Google Scholar 

  20. Carlevaro MF, Cermelli S, Cancedda R, Cancedda FD (2000) Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J Cell Sci 113(1):59–69

    CAS  PubMed  Google Scholar 

  21. Street J, Bao M, Deguzman L, Bunting S, Jr FVP, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A 99(15):9656–9661. https://doi.org/10.1073/pnas.152324099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sahni M, Raz R, Coffin JD, Levy D, Basilico C (2001) STAT1 mediates the increased apoptosis and reduced chondrocyte proliferation in mice overexpressing FGF2. Development 128(11):2119–2129

    CAS  PubMed  Google Scholar 

  23. Coffin J, Florkiewicz R, Neumann J, Mort-Hopkins T, Gn D, Lightfoot P, German R, Howles P, Kier A, O'toole B (1995) Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Mol Biol Cell 6(12):1861–1873. https://doi.org/10.1091/mbc.6.12.1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alessi P, Leali D, Camozzi M, Cantelmo A, Albini A, Presta M (2009) Anti-FGF2 approaches as a strategy to compensate resistance to anti-VEGF therapy: long-pentraxin 3 as a novel antiangiogenic FGF2-antagonist. Eur Cytokine Netw 20(4):225–234. https://doi.org/10.1684/ecn.2009.0175

    Article  CAS  PubMed  Google Scholar 

  25. Naveau B (2004) Strontium: a new treatment for osteoporosis. Joint Bone Spine 71(4):261–263. https://doi.org/10.1016/j.jbspin.2003.12.008

    Article  PubMed  Google Scholar 

  26. Liu F, Zhang X, Yu X, Xu Y, Feng T, Ren D (2011) In vitro study in stimulating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering. J Mater Sci Mater Med 22(3):683–692. https://doi.org/10.1007/s10856-011-4247-1

    Article  CAS  PubMed  Google Scholar 

  27. Li S, Li L, Guo C, Qin H, Yu X (2017) A promising wound dressing material with excellent cytocompatibility and proangiogenesis action for wound healing: strontium loaded silk fibroin/sodium alginate (SF/SA) blend films. Int J Biol Macromol 104:969–978. https://doi.org/10.1016/j.ijbiomac.2017.07.020

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The project was supported by the National Natural Science Foundation of China (Grant Nos. 31502129, 31873032, and 31802154), the China Postdoctoral Science Foundation funded project (Grant No. 2018M631210), and the Natural Science Foundation of Shaaxi Province (Grant No. 2018JM3041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Wang.

Ethics declarations

In the present study, all experimental procedures were conducted with the approval of the Institutional Animal Care and Use Committee of Northwest A&F University, Yangling, China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Kong, Y., Huang, Y. et al. Influence of Strontium on Vascular Endothelial Growth Factor and Fibroblast Growth Factor 2 Expression in Rat Chondrocytes Cultured In Vitro. Biol Trace Elem Res 190, 466–471 (2019). https://doi.org/10.1007/s12011-018-1564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1564-y

Keywords

Navigation