Skip to main content
Log in

Research Progress on the Toxic Antagonism of Selenium Against Mycotoxins

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Animal feed is prone to becoming infected with molds during production and storage, resulting in secondary metabolite mycotoxins, such as aflatoxin B1 (AFB1), T-2 toxins, deoxynivalenol (DON), and ochratoxin A (OTA), which are harmful to humans and animals. Selenium is an essential trace element for humans and animals, and it is also an effective antioxidant. Many studies have shown that selenium can reduce the damage caused by mycotoxins in animals. This article reviews the current literature on the antagonistic effects of selenium on AFB1, T-2, DON, and OTA toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li X, Xing M, Chen M, Zhao J, Fan R, Zhao X, Cao C, Yang J, Zhang Z, Xu S (2017) Effects of selenium-lead interaction on the gene expression of inflammatory factors and selenoproteins in chicken neutrophils. Ecotoxicol Environ Saf 139:447–453

    Article  CAS  PubMed  Google Scholar 

  2. Jin X, Jia T, Liu R, Xu S (2018) The antagonistic effect of selenium on cadmium-induced apoptosis via PPAR-γ/PI3K/Akt pathway in chicken pancreas. J Hazard Mater 357:355–362

    Article  CAS  PubMed  Google Scholar 

  3. Cui YH (2003) Food method for antifungal toxin action. Foreign Med Hygiene 30(1):25–33

    Google Scholar 

  4. Zhao XJ, Cao GR, Wang ZX et al (1997) Effects of selenium and VB1 on the poisoning of chicks with Fusarium. Northwest Agric J 6(2):90–93

    Google Scholar 

  5. Peng SQ, Yang JS, Sun CW (1998) Effect of butenolide on transmembrane potential of cardiomyocytes and protective effect of selenium. Chin J Public Health 17(6):325–327

    CAS  Google Scholar 

  6. Wang SX, Li AK, Xie G et al (2006) Membrane toxin detection technology for grain and feed resources. Chin J Cereals 21(3):415–418

    CAS  Google Scholar 

  7. Wang SY, Gao X, Li WJ et al (2015) The harm of common mycotoxins to livestock production. Feed and Livestock: New Feed 10:42–46

    Google Scholar 

  8. Zain ME (2011) Impact of mycotoxins on humans and animals. Saudi Chem Soc 15:129–144

    Article  CAS  Google Scholar 

  9. Darwish WS, Ikenaka Y, Nakayama SM et al (2014) An overview on mycotoxin contamination of foods in Africa. Vet Med Sci 76:789–797

    Article  CAS  Google Scholar 

  10. Schatzmayr G, Streit E (2013) Global occurrence of mycotoxins in the food and feed chain: facts and figures. World Mycotoxin J 6(3):213–222

    Article  CAS  Google Scholar 

  11. Rodrigues I, Naehrer K (2012) A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins 4(9):663–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang JH, Huang GM (2017) Analysis of the contamination status of mycotoxin in feed and feed ingredients in 20 provinces and municipalities in 2016. Pig raising (2):21–24

  13. Xie WM, Qian Y, Huang CR, et al. (2017) Analysis report of mycotoxin in feed and raw materials in some parts of the country in 2016. Pig raising (2):25–27

  14. Xu GD (2017) Survey of domestic feed ingredients and feed mycotoxin contamination from 2013 to 2015. Chinese animal health (12):1–6

  15. Cheng CM, Bo F, Li Y et al (2014) Distribution of pollution of T-2 toxin in feed ingredients in 2013. Feed and Livestock 47(6):17–20

    Google Scholar 

  16. Gong AQ, Quang MX, Zhou F et al (2017) Detection and analysis of mycotoxins in feed raw materials and compound feed in China in the first half of 2017. Chinese Feed 20:41–43

    Google Scholar 

  17. Han W (2010) Study on the effects of several mycotoxins on the toxicity of BHK cells and its mechanism. Anhui University, Hefei

    Google Scholar 

  18. Yu XY, Li TZ, Shen ZQ (2017) The harm of mycotoxin in feed to pigs and preventive measures. Pig raising (1):30–32

  19. Newberne PM, Conner MW (1974) Effect of selenium on acute response to aflatoxin B1. In Trace substances in environmental health-VII Edited by D D Hemphillp University of Missouri, Columbia, MO

  20. Gregory JF 3rd, Edds GT (1984) Effect of dietary selenium on the metabolism of aflatoxin B1 in turkeys. Food Chem Toxicol 22(8):637–642

    Article  CAS  PubMed  Google Scholar 

  21. Milks M, Wilt SR, Ali I et al (1985) The effects of selenium on the emergence of aflatoxin B1-induced enzyme-altered foci in rat liver. Fundam Appl Toxicol 5(2):320–326

    Article  CAS  PubMed  Google Scholar 

  22. Nyandieka HS, Wakhisi J, Kilonzo MM (1990) Association of reduction of AFB1-induced liver tumours by antioxidants with increased activity of microsomal enzymes. Indian J Med Res 92(14):332–336

    CAS  PubMed  Google Scholar 

  23. Shi DY, Liao SQ, Liu N et al (2011) Effect of selenium on antioxidant function of kidney tissue of aflatoxin B1 poisoned duckling. Chin Vet J 47(12):19–21

    CAS  Google Scholar 

  24. Shi D, Liao S, Guo S, Li H, Yang M, Tang Z (2015) Protective effects of selenium on aflatoxin B1-induced mitochondrial permeability transition, DNA damage, and histological alterations in duckling liver. Biol Trace Elem Res 163(1–2):162–168

    Article  CAS  PubMed  Google Scholar 

  25. Parveen F, Nizamani ZA, Gan F, Chen X, Shi X, Kumbhar S, Zeb A, Huang K (2014) Protective effect of selenomethionine on aflatoxin B1-induced oxidative stress in MDCK cells. Biol Trace Elem Res 157(3):266–274

    Article  CAS  PubMed  Google Scholar 

  26. Yu Z, Wang F, Liang N, Wang C, Peng X, Fang J, Cui H, Jameel Mughal M, Lai W (2015) Effect of selenium supplementation on apoptosis and cell cycle blockage of renal cells in broilers fed a diet containing aflatoxin B1. Biol Trace Elem Res 168(1):242–251

    Article  CAS  PubMed  Google Scholar 

  27. Chen K, Fang J, Peng X, Cui H, Chen J, Wang F, Chen Z, Zuo Z, Deng J, Lai W, Zhou Y (2014) Effect of selenium supplementation on aflatoxin B1-induced histopathological lesions and apoptosis in bursa of Fabricius in broilers. Food Chem Toxicol 74(74):91–97

    Article  CAS  PubMed  Google Scholar 

  28. He Y, Fang J, Peng X, Cui H, Zuo Z, Deng J, Chen Z, Lai W, Shu G, Tang L (2014) Effects of sodium selenite on aflatoxin B1-induced decrease of ileac T cell and the mRNA contents of IL-2,IL-6,and TNF-α in broilers. Biol Trace Elem Res 159(1–3):167–173

    Article  CAS  PubMed  Google Scholar 

  29. Guo S, Shi D, Liao S, Su R, Lin Y, Pan J, Tang Z (2012) Influence of selenium on body weights and immune organ indexes in ducklings intoxicated with aflatoxin B1. Biol Trace Elem Res 146(2):167–170

    Article  CAS  PubMed  Google Scholar 

  30. Hao S, Hu JF, Song S, Huang D, Xu H, Qian G, Gan F, Huang K (2016) Selenium alleviates aflatoxin B1-induced immune toxicity through improving glutathione peroxidase 1 and selenoprotein S expression in primary porcine splenocytes. J Agric Food Chem 64(6):1385–1393

    Article  CAS  PubMed  Google Scholar 

  31. Hou LL, Zhou X, Gan F et al (2018) Combination of selenomethionine and N-acetylcysteine alleviates the joint toxicities of aflatoxin B1 and ochratoxin A by ERK MAPK signal pathway in porcine alveolar macrophages. J Agric Food Chem 66(23):5913–5923

    Article  CAS  PubMed  Google Scholar 

  32. Chen X, Che C, Korolchuk VI, Gan F, Pan C, Huang K (2017) Selenomethionine alleviates AFB1-induced damage in primary chicken hepatocytes by inhibiting CYP450 1A5 expression via upregulated SelW expression. J Agric Food Chem 65(12):2495–2502

    Article  CAS  PubMed  Google Scholar 

  33. Li MX, Cuff CF, Pestka JJ (2006) T-2 toxin impairment of enteric reovirus clearance in the mouse associated with suppressed immunoglobulin and IFN-γ responses. Toxicol Appl Pharmacol 214(3):318–325

    Article  CAS  PubMed  Google Scholar 

  34. Pu LM, Liu N (2001) Experimental observation of DNA damage of peripheral blood lymphocytes in rats with heart, liver and kidney by T-2 toxin. Chin J Endemic Dis 20(5):45–51

    Google Scholar 

  35. Dvorska J, Pappas A, Karadas F et al (2007) Protective effect of modified glucomannans and organic selenium against antioxidant depletion in the chicken liver due to T-2 toxin-contaminated feed consumption. Comp Biochem Physiol C Toxicol Pharmacol 145(4):582–587

    Article  CAS  PubMed  Google Scholar 

  36. Kieliszek M, Blazejak S (2016) Current knowledge on the importance of selenium in food for living organisms: a review. Molecules 21(5):609–625

    Article  CAS  PubMed Central  Google Scholar 

  37. Keshavarz SA, Memarbashi A, Balali M (2001) Preventive effect of selenium on T-2 toxin membrane toxicity. Adv Exp Med Biol 50:463–466

    Article  Google Scholar 

  38. Salimian J, Arefpour MA, Riazipour M, Poursasan N (2014) Immunomodulatory effects of selenium and vitamin E on alterations in T lymphocyte subsets induced by T-2 toxin. Immunopharmacol Immunotoxicol 36(4):275–281

    Article  CAS  PubMed  Google Scholar 

  39. Ahmadi A, Poursasan N, Amani J, Salimian J (2015) Adverse effect of T-2 toxin and the protective role of selenium and vitamin E on peripheral blood B lymphocytes. Iran J Immunol:IJI 12(1):64–69

    PubMed  Google Scholar 

  40. Liu J, Wang L, Guo X et al (2014) The role of mitochondria in T-2 toxin-induced human chondrocytes apoptosis. PLoS One 9(9):108–394

    Google Scholar 

  41. Xu J, Pan S, Gan F, Hao S, Liu D, Xu H, Huang K (2018) Selenium deficiency aggravates T-2 toxin-induced injury of primary neonatal rat cardiomyocytes through ER stress. Chem Biol Interact 285:96–105

    Article  CAS  PubMed  Google Scholar 

  42. Duarte D (2008) Mycotoxin blue book. China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  43. Rotter BA (1996) Toxicology of deoxynivalenol (vomitoxin). J Toxicol Environ Health 48(1):1–34

    Article  CAS  PubMed  Google Scholar 

  44. Ren ZH, Deng HD, Wang YC, Deng JL, Zuo ZC, Wang Y, Peng X, Cui HM, Fang J, Yu SM, Shen LH, Hu YC (2016) The Fusarium toxin zearalenone and deoxynivalenol affect murine splenic antioxidant functions, interferon levels, and T-cell subsets. Environ Toxicol Pharmacol 41:195–200

    Article  CAS  PubMed  Google Scholar 

  45. Mishra S, Dwivedi PD, Pandey HP, Das M (2014) Role of oxidative stress in deoxynivalenol induced toxicity. Food Chem Toxicol 72(3):20–29

    Article  CAS  PubMed  Google Scholar 

  46. Liang Z, Ren Z, Gao S, Chen Y, Yang Y, Yang D, Deng J, Zuo Z, Wang Y, Shen L (2015) Individual and combined effects of deoxynivalenol and zearalenone on mouse kidney. Environ Toxicol Pharmacol 40(3):686–691

    Article  CAS  PubMed  Google Scholar 

  47. Ren ZH, Deng HD, Deng YT, Deng JL, Zuo ZC, Yu SM, Shen LH, Cui HM, Xu ZW, Hu YC (2016) Effect of the Fusarium toxins, zearalenone and deoxynivalenol, on the mouse brain. Environ Toxicol Pharmacol 46:62–70

    Article  CAS  PubMed  Google Scholar 

  48. Zhou HR, Harkema JR, Hotchkiss JA, Yan D, Roth RA, Pestka JJ (2000) Lipopolysaccharide and the trichothecene vomitoxin (deoxynivalenol) synergistically induce apoptosis in murine lymphoid organs. Toxicol Sci 53(2):253–263

    Article  CAS  PubMed  Google Scholar 

  49. Zhou HR, Islam Z, Pestka JJ (2005) Induction of competing apoptotic and survival signaling pathways in the macrophage by the ribotoxic trichothecene deoxynivalenol. Toxicol Sci 87(1):113–122

    Article  CAS  PubMed  Google Scholar 

  50. Ren Z, Wang Y, Deng H, Deng Y, Deng J, Zuo Z, Wang Y, Peng X, Cui H, Shen L (2015) Deoxynivalenol induces apoptosis in chicken splenic lymphocytes via the reactive oxygen species-mediated mitochondrial pathway. Environ Toxicol Pharmacol 39(1):339–346

    Article  CAS  PubMed  Google Scholar 

  51. Zhou HR, Islam Z, Pestka JJ (2003) Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mRNA expression in spleens of mice exposed to the trichothecene vomitoxin. Toxicol Sci An Off J Soc Toxicol 72(1):130–142

    Article  CAS  Google Scholar 

  52. Ren Z, Wang Y, Deng H, Deng Y, Deng J, Zuo Z, Wang Y, Peng X, Cui H, Shen L, Ma X, Fang J (2015) Deoxynivalenol-induced cytokines and related genes in concanavalin A-stimulated primary chicken splenic lymphocytes. Toxicol in Vitro 29(3):558–563

    Article  CAS  PubMed  Google Scholar 

  53. Ren ZH, Zhou R, Deng JL, Zuo ZC, Peng X, Wang YC, Wang Y, Yu SM, Shen LH, Cui HM, Fang J (2014) Effects of the Fusarium toxin zearalenone (ZEA) and/or deoxynivalenol (DON) on the serum IgA, IgG and IgM levels in mice. Food Agric Immunol 25(4):600–606

    Article  CAS  Google Scholar 

  54. Ren ZH, Deng YT, Wang YC, Zhou R, Deng HD, Deng JL, Zuo ZC, Peng X, Yu SM, Shen LH, Cui HM, Hu YC (2016) Effects of the Fusarium toxin zearalenone and/or deoxynivalenol on the serum IL-1, IL-4, and C3 levels in mice. Food Agric Immunol 27(3):414–421

    Article  CAS  Google Scholar 

  55. Wang X, Zuo Z, Deng J, et al. (2017) Protective role of selenium in immune-relevant cytokine and immunoglobulin production by piglet splenic lymphocytes exposed to deoxynivalenol. Biol Trace Elem Res (2):1–9

  56. Mclean M (1996) The phytotoxicity of Fusarium metabolites: an update since 1989. Mycopathologia 133(3):163–179

    Article  CAS  PubMed  Google Scholar 

  57. Wang X, Zuo Z, Zhao C, Zhang Z, Peng G, Cao S, Hu Y, Yu S, Zhong Z, Deng J, Ren Z (2016) Protective role of selenium in the activities of antioxidant enzymes in piglet splenic lymphocytes exposed to deoxynivalenol. Environ Toxicol Pharmacol 47:53–61

    Article  CAS  PubMed  Google Scholar 

  58. Ren Z, Deng H, Deng Y, et al. (2017) Combined effects of deoxynivalenol and zearalenone on oxidative injury and apoptosis in porcine splenic lymphocytes in vitro. Exp Toxicol Pathol, 69(8)

  59. Levkut M, Revajova V, Levkutova M et al (2009) Leukocytic responses of broilers following dietary contamination with deoxynivalenol and/or treatment by dietary selenium supplementation. Br Poult Sci 50(2):181–187

    Article  CAS  PubMed  Google Scholar 

  60. Van LE, Thanh B, Lemay M et al (2016) The potential effects of antioxidant feed additives in mitigating the adverse effects of corn naturally contaminated with Fusarium mycotoxins on antioxidant systems in the intestinal mucosa,plasma,and liver in weaned pigs. Mycotoxin Res 32(2):99–116

    Article  CAS  Google Scholar 

  61. Peng SQ, Yang JS (2003) Effect of deoxynivalenol on action potentials of cultured cardiomyocytes and the protective effects of selenium. Chin J Prev Med 37(6):423–425

    CAS  Google Scholar 

  62. Placha I, Borutova R, Gresakova L, Petrovic V, Faix S, Leng L (2009) Effects of excessive selenium supplementation to diet contaminated with deoxynivalenol on blood phagocytic activity and antioxidative status of broilers. J Anim Physiol Anim Nutr 93(6):695–702

    Article  CAS  Google Scholar 

  63. Rizzo AF, Atroshi F, Ahotupa M et al (1994) Protective effect of antioxidants against free radical-mediated lipid peroxidation induced by DON or T-2 toxin. Zentralbl Veterinarmed A 41(1–10):81–90

    Article  CAS  PubMed  Google Scholar 

  64. Carpenter RL, Jiang Y, Jing Y, He J, Rojanasakul Y, Liu LZ, Jiang BH (2011) Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1. Biochem Biophys Res Commun 414(3):533–538

    Article  CAS  PubMed  Google Scholar 

  65. Bradley MM, Siperko LM, Porter MD (2011) Colorimetric-solid phase extraction method for trace level determination of arsenite in water. Talanta 86:64–70

    Article  CAS  PubMed  Google Scholar 

  66. Gautier JC, Holzhaeuser D, Markovic J, Gremaud E, Schilter B̂, Turesky RJ (2001) Oxidative damage and stress response from ochratoxin a exposure in rats. Free Radic Biol Med 30(10):1089–1098

    Article  CAS  PubMed  Google Scholar 

  67. Angela M, Herbert Z, Paul W et al (2004) Ochratoxin a: lack of formation of covalent DNA adducts. Chem Res Toxicol 17(2):234–242

    Article  CAS  Google Scholar 

  68. Chen P (2010) Effect of Ochratoxin a on Nrf2 antioxidant system in IPEC-J2 cells and protective effect of selenium. Sichuan Agricultural University

  69. Yu ML, Shan Y (2017) Protective effect of selenomethionine and sodium selenite on ochratoxin A kidney injury model in mice. Modern Prev Med 44(11)

  70. Gan F, Xue H, Huang Y et al (2015) Selenium alleviates porcine nephrotoxicity of ochratoxin a by improving selenoenzyme expression in vitro. PLoS One 10(3):80–98

    Article  CAS  Google Scholar 

  71. Gan F, Hu Z, Zhou Y, Huang K (2017) Overexpression and low expression of selenoprotein S impact ochratoxin A-induced porcine cytotoxicity and apoptosis in vitro. J Agric Food Chem 65:6972–6981

    Article  CAS  PubMed  Google Scholar 

  72. Li Z, Zhang X, Cui J, Kang W (2012) Assessment on pollution of Ochratoxin a in grain in China and its apoptosis effect on vitro-cultured human tubular kidney cells. J Biochem Mol Toxicol 26(4):139–146

    Article  CAS  PubMed  Google Scholar 

  73. Fu Y, Cheng WH, Porres JM, Ross DA, Lei XG (1999) Knockout of cellular glutathione peroxidase gene renders mice susceptible to diquat-induced oxidative stress. Free Radic Biol Med 27:605–611

    Article  CAS  PubMed  Google Scholar 

  74. Surai PF (2006) Selenium in nutrition and health. Nottingham University Press

  75. Yang CF, Liu J, Shen HM, OngNote CN (2000) Protective effect of ebselen on aflatoxin B1-induced cytotoxicity in primary rat hepatocytes. Pharmacol Toxicol 86:156–161

    Article  CAS  PubMed  Google Scholar 

  76. Meki AR, Hussein AA (2001) Melatonin reduces oxidative stress induced by ochratoxin A in rat liver and kidney. Comp Biochem Physiol C 130(3):305–313

    CAS  Google Scholar 

  77. Mezes M, Barta M, Nagy G (1999) Comparative investigation on the effect of T-2 mycotoxin on lipid peroxidation and antioxidant status in different poultry species. Res Vet Sci 66(1):19–23

    Article  CAS  PubMed  Google Scholar 

  78. Rotruck JT, Pope AL, Ganther HE et al (1973) Selenium: biochemical role as a component of glutathione peroxidase. Nutr Rev 38(8):280–283

    Article  Google Scholar 

  79. Yao HD, Wu Q, Zhang ZW, Zhang JL, Li S, Huang JQ, Ren FZ, Xu SW, Wang XL, Lei XG (2013) Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles, of se-deficient chicks. J Nutr 143(5):613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yao HD, Wu Q, Zhang ZW, Li S, Wang XL, Lei XG, Xu SW (2013) Selenoprotein W serves as an antioxidant in chicken myoblasts. BBA - General Subjects 1830(4):3112–3120

    Article  CAS  PubMed  Google Scholar 

  81. Ruan HF, Xu SW (2010) Effect of selenium on the expression of selenoprotein W mRNA in chicken myoblasts. China Society of Animal Husbandry and Veterinary Medicine 2010 Annual Meeting - China Veterinary Clinical Conference

  82. Jin X, Xu Z, Zhao X et al (2017) The antagonistic effect of selenium on lead-induced apoptosis via mitochondrial dynamics pathway in the chicken kidney. Chemosphere 180:259–266

    Article  CAS  PubMed  Google Scholar 

  83. Rui XL (2014) Protective effect of selenium and zeolite combined with aflatoxin B1 on broilers. Nanjing Agricultural College

  84. Yang ZT, Chen JH, Wang ZL (2009) Effect of T-2 toxin and selenium on P53,Bcl-xL and caspase-3 protein expression in chondrocytes. J Environ Health

  85. Gan F, Zhou Y, Hou L, Qian G, Chen X, Huang K (2017) Ochratoxin A induces nephrotoxicity and immunotoxicity through different MAPK signaling pathways in PK15 cells and porcine primary splenocytes. Chemosphere 182:630–637

    Article  CAS  PubMed  Google Scholar 

  86. Bi CL, Wang H, Wang YJ, Sun J, Dong JS, Meng X, Li JJ (2016) Selenium inhibits Staphylococcus aureus-induced inflammation by suppressing the activation of the NF-κB and MAPK signalling pathways in RAW264.7 macrophages. Eur J Pharmacol 780:159–165

    Article  CAS  PubMed  Google Scholar 

  87. Zhang Q (2012) Bibliometric analysis of the development trend of antioxidants in trace element selenium. Anhui Agric Sci 40(26):13164–13166

    Google Scholar 

Download references

Acknowledgments

We thank Kate Fox, DPhil, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

The present work was supported by the National Natural Science Fund of China (31402269) and the Changjiang Scholars & Innovative Research Team of the Ministry of Education of China Funds (Grant no. IRTO848).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junliang Deng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

The authors confirm that this manuscript has not been published elsewhere and is not under consideration by another journal. All authors have approved the manuscript and agree with submission to the Biological Trace Element Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., He, H., Fan, Y. et al. Research Progress on the Toxic Antagonism of Selenium Against Mycotoxins. Biol Trace Elem Res 190, 273–280 (2019). https://doi.org/10.1007/s12011-018-1532-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1532-6

Keywords

Navigation