Skip to main content

Assessment of Human Health Risk of Toxic Elements Due to Cinnamon Ingestion in the Diet

Abstract

Recent studies highlighted the beneficial action of cinnamon on postprandial glycemia and LDL-cholesterol concentrations, both in healthy subjects and type 2 diabetic patients. Inclusion of 3 to 6 g of cinnamon in diet revealed a beneficial effect on glucose metabolism control in non-diabetic adults during postprandial period. Given the levels of toxic elements present in cinnamon species from different countries, such large daily intakes of cinnamon can easily exceed their maximum permissible limits and, consequently, induce adverse health effects. This study aimed to investigate the elemental concentration profile in cinnamon powder products available in the Portuguese market and to assess the cumulative non-carcinogenic risk to human health due to the exposure to mixtures of such elements through the inclusion of 6 g of cinnamon in diet. Concentrations of Cu, Zn, Fe, Al, Cl, Mn, and Sr were determined by wavelength dispersive X-ray fluorescence spectroscopy in different lots of eight branded and one bulk cinnamon powder products. Linear mixed models have revealed significant differences in concentrations of Zn, Fe, Al, and Cl between brands. In particular, bulk cinnamon samples presented the highest contents of Fe (475.0–490.0 mg kg−1) and Al (1139.0–1336.0 mg kg−1). The non-carcinogenic risk was assessed following EPA’s guidelines through the hazard quotient (HQ). Estimated HQ values were lower than the USEPA guideline of 1. Additionally, the hazard index (HI), representing the combined non-carcinogenic effects of all toxic elements, revealed no potential human health risk for heavy consumers of cinnamon (HI = 0.660).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Özcan MM, Akbulut M (2008) Estimation of minerals, nitrate and nitrite contents of medicinal and aromatic plants used as spices, condiments and herbal tea. Food Chem 106:852–858

    Article  CAS  Google Scholar 

  2. 2.

    Baker I, Chohan M, Opara EI (2013) Impact of cooking and digestion, in vitro, on the antioxidant capacity and anti-inflammatory activity of cinnamon, clove and nutmeg. Plant Foods Hum Nutr 68:364–369

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Gruenwald J, Freder J, Armbruester N (2010) Cinnamon and health. Crit Rev Food Sci Nutr 50:822–834

    Article  PubMed  Google Scholar 

  4. 4.

    Ulbricht C, Seamon E, Windsor RC, Armbruester N et al (2011) An evidence-based systematic review of cinnamon (Cinnamomum spp.) by the natural standard research collaboration. J Diet Suppl 8:378–454 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22432776

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Ribeiro-Santos R, Andrade M, Madella D, Martinazzo AP, de Aquino Garcia Moura L, de Melo NR, Sanches-Silva A (2017) Revisiting an ancient spice with medicinal purposes: cinnamon. Trends Food Sci Technol 62:154–169

    Article  CAS  Google Scholar 

  6. 6.

    Davis PA, Yokoyama W (2011) Cinnamon intake lowers fasting blood glucose: meta-analysis. J Med Food 14:884–889 Available from: http://www.liebertonline.com/doi/abs/10.1089/ jmf.2010.0180

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Costello RB, Dwyer JT, Saldanha L, Bailey RL, Merkel J, Wambogo E (2016) Do cinnamon supplements have a role in glycemic control in type 2 diabetes? A narrative review. J Acad Nutr Diet 116:1794–1802

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Whitfield P, Parry-Strong A, Walsh E, Weatherall M, Krebs JD (2016) The effect of a cinnamon-, chromium- and magnesium-formulated honey on glycaemic control, weight loss and lipid parameters in type 2 diabetes: an open-label cross-over randomised controlled trial. Eur J Nutr 55:1123–1131

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Maierean SM, Serban M-C, Sahebkar A, Ursoniu S, Serban A, Penson P, Banach M (2017) The effects of cinnamon supplementation on blood lipid concentrations: a systematic review and meta-analysis. J Clin Lipidol 11(6):1393–1406

    Article  PubMed  Google Scholar 

  10. 10.

    Hlebowicz J, Darwiche G, Björgell O, Almér LO (2007) Effect of cinnamon on postprandial blood glucose, gastric emptying, and satiety in healthy subjects. Am J Clin Nutr 85:1552–1556

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Bernardo MA, Silva ML, Santos E, Moncada MM, Brito J, Proença L, Singh J, De Mesquita MF (2015) Effect of cinnamon tea on postprandial glucose concentration. J Diabetes Res 2015:913651–913656. https://doi.org/10.1155/2015/913651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Moncada M, Bernardo M, Silva M, Jorge A, Pereira P, Brito J, Singh J, Mesquita M (2017) Effect of cinnamon powder addition to a Portuguese custard tart (pastel de nata) on adults postprandial glycaemia. World Heart J 9:135–144

    Google Scholar 

  13. 13.

    Akilen R, Tsiami A, Devendra D, Robinson N (2012) Cinnamon in glycaemic control: systematic review and meta analysis. Clin Nutr 31:609–615

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Allen RW, Schwartzman E, Baker WL, Coleman CI, Phung OJ (2013) Cinnamon use in type 2 diabetes: an updated systematic review and meta-analysis. Ann Fam Med 11:452–459

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Shan B, Cai YZ, Sun M, Corke H (2005) Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 53:7749–7759

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Thantsin K, Zhang Q, Yang J, Wang Q (2008) Composition of semivolatile compounds of 10 Cinnamomum species from China and Myanmar. Nat Prod Res 22:576–583

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Geng S, Cui Z, Huang X, Chen Y, Xu D, Xiong P (2011) Variations in essential oil yield and composition during Cinnamomum cassia bark growth. Ind Crop Prod 33:248–252

    Article  CAS  Google Scholar 

  18. 18.

    Marcos A, Fisher A, Rea G, Hill SJ (1998) Preliminary study using trace element concentrations and chemometrics approach to determine the geographical origin of tea. J Anal At Spectrom 13:521–525

    Article  CAS  Google Scholar 

  19. 19.

    Cataldo DA, Wildung RE (1978) Soil and plants factors influencing the accumulation of heavy metals by plants. Environ Health Perspect 27:149–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  21. 21.

    Nordberg GF, Fowler BA, Nordberg M (2014) Handbook on the toxicology of metals, Fourth edn. Academic Press/Elsevier Available from: http://www.sciencedirect.com/science/article/pii/B9780444594532010015

  22. 22.

    Abernethy DR, Destefano AJ, Cecil TL, Zaidi K, Williams RL (2010) Metal impurities in food and drugs. Pharm Res 27:750–755

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Corporate Author (1976) List of maximum levels recommended for contaminants by the Joint FAO/WHO codex alimentarius commission - second series by FAO, Rome (Italy). Food Policy and Nutrition Div; World Health Organization, Geneva (Switzerland)

  24. 24.

    US EPA (2000) Handbook for non-cancer health effects evaluation. US Environmental Protection Agency. Available from: https://nepis.epa.gov/Exe/ZyNET.EXE?ZyActionL=Register&User=anonymous&Password=anonymous&Client=EPA&Init=1

  25. 25.

    European Commission (2001) Setting maximum levels of certain contaminants in foodstuffs. J Eur Commun 466:1–25

    Google Scholar 

  26. 26.

    European Commission (2006) Setting maximum levels for certain contaminants in foodstuffs [Internet]. Available from: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1881&from=EN

  27. 27.

    European Commission (2008) Amending regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Available from: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32006R1881

  28. 28.

    European Food Safety Authority (2012) Lead dietary exposure in the european population. EFSA J 10(1):2551

    Article  CAS  Google Scholar 

  29. 29.

    European Food Safety Authority (2012) Cadmium dietary exposure in the european population. EFSA J 10(7):2831

    Google Scholar 

  30. 30.

    Krejpcio Z, Król E, Sionkowski S (2007) Evaluation of heavy metals contents in spices and herbs available on the polish market. Polish J Environ Stud 16:97–100

    CAS  Google Scholar 

  31. 31.

    López FF, Cabrera C, Lorenzo ML, López MC (2000) Aluminium levels in spices and aromatic herbs. Sci Total Environ 257:191–197

    Article  PubMed  Google Scholar 

  32. 32.

    Singh V, Garg AN (2006) Availability of essential trace elements in Indian cereals, vegetables and spices using INAA and the contribution of spices to daily dietary intake. Food Chem 94:81–89

    Article  CAS  Google Scholar 

  33. 33.

    Karadaş C, Kara D (2012) Chemometric approach to evaluate trace metal concentrations in some spices and herbs. Food Chem 130:196–202

    Article  CAS  Google Scholar 

  34. 34.

    Garcia E, Cabrera C, Lorenzo ML, Lopez MC (2000) Chromium levels in spices and aromatic herbs. Sci Total Environ 247:51–56

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Gasser U, Klier B, Kühn V, Steinhoff B (2009) Current findings on the heavy metal content in herbal drugs. Pharmeur Sci Notes 2009:37–50

    CAS  PubMed  Google Scholar 

  36. 36.

    Kara D (2009) Evaluation of trace metal concentrations in some herbs and herbal teas by principal component analysis. Food Chem 114:347–354

    Article  CAS  Google Scholar 

  37. 37.

    Ansari TM, Ikram N, Najam-ul-Haq M, Fayyaz I, Fayyaz Q, Ghafoor I, Khalid N (2004) Essential trace metal (zinc, manganese, copper and iron) levels in plants of medicinal importance. J Biol Sci 4:95–99

    Article  Google Scholar 

  38. 38.

    Özcan M, Ünver A, Uçar T, Arslan D (2008) Mineral content of some herbs and herbal teas by infusion and decoction. Food Chem 106:1120–1127

    Article  CAS  Google Scholar 

  39. 39.

    Seddigi ZS, Kandhro GA, Shah F, Danish E, Soylak M (2016) Assessment of metal contents in spices and herbs from Saudi Arabia. Toxicol Ind Health 32:260–269 Available from: http://journals.sagepub.com/doi/10.1177/074823 3713500822

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    US EPA (2007) Framework for metals risk assessment. Office of the Science Advisor, Risk Assessment Forum. EPA 120/R-07/00: 1–172

  41. 41.

    Cardoso C, Farias I, Costa V, Nunes M, Gordo L (2010) Estimation of risk assessment of some heavy metals intake through black scabbardfish (Aphanopus carbo) consumption in Portugal. Risk Anal 30:952–961

    Article  PubMed  Google Scholar 

  42. 42.

    Olmedo P, Pla A, Hernández AF, Barbier F, Ayouni L, Gil F (2013) Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers. Environ Int 59:63–72

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Yap CK, Cheng WH, Karami A, Ismail A (2016) Health risk assessments of heavy metal exposure via consumption of marine mussels collected from anthropogenic sites. Sci Total Environ 553:285–296

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Pawełczyk A (2013) Assessment of health risk associated with persistent organic pollutants in water. Environ Monit Assess 185:497–508

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Ayantobo OO, Awomeso JA, Oluwasanya GO, Bada BS, Taiwo AM (2014) Non-cancer human health risk assessment from exposure to heavy metals in surface and groundwater in Igun Ijesha, Southwest Nigeria. Am J Environ Sci 10:301–311

    Article  CAS  Google Scholar 

  46. 46.

    Naveedullah, Hashmi MZ, Yu C, Shen H, Duan D, Shen C, Lou L, Chen Y (2014) Concentrations and human health risk assessment of selected heavy metals in surface water of the siling reservoir watershed in Zhejiang province, China. Pol J Environ Stud 23:801–811

    CAS  Google Scholar 

  47. 47.

    Wongsasuluk P, Chotpantarat S, Siriwong W, Robson M (2014) Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ Geochem Health 36:169–182

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Adamu CI, Nganje TN, Edet A (2015) Heavy metal contamination and health risk assessment associated with abandoned barite mines in cross river state, southeastern Nigeria. Environ Nanotechnol Monitoring Manag 3:10–21 Available from: http://www.sciencedirect.com/science/article/pii/S2215153214000117

    Article  Google Scholar 

  49. 49.

    Asare-Donkor NK, Boadu TA, Adimado AA (2016) Evaluation of groundwater and surface water quality and human risk assessment for trace metals in human settlements around the bosomtwe crater lake in Ghana. SpringerPlus 5:1812 Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Wang X, Sato T, Xing B, Tao S (2005) Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci Total Environ 350:28–37

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Chen L, Zhou S, Shi Y, Wang C, Li B, Li Y, Wu S (2018) Heavy metals in food crops, soil, and water in the Lihe river watershed of the Taihu region and their potential health risks when ingested. Sci Total Environ 615:141–149

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Taghizadeh SF, Davarynejad G, Asili J, Nemati SH, Rezaee R, Goumenou M, Tsatsakis AM, Karimi G (2017) Health risk assessment of heavy metals via dietary intake of five pistachio (Pistacia vera L.) cultivars collected from different geographical sites of Iran. Food Chem Toxicol 107:99–107

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Zhu M, Jiang Y, Cui B, Jiang Y, Cao H, Zhang W (2015) Determination of the heavy metal levels in Panax notoginseng and the implications for human health risk assessment. Hum Ecol Risk Assess An Int J 21:1218–1229 Available from: https://doi.org/10.1080/10807039.2014.957942

    Article  CAS  Google Scholar 

  54. 54.

    Banach JL, Stratakou I, van der Fels-Klerx HJ, Besten HMW, Zwietering MH (2016) European alerting and monitoring data as inputs for the risk assessment of microbiological and chemical hazards in spices and herbs. Food Control 69:237–249 Available from: http://www.sciencedirect.com/science/article/pii/ S0956713516301797

    Article  Google Scholar 

  55. 55.

    Zhu F, Wang X, Fan W, Qu L, Qiao M, Yao S (2013) Assessment of potential health risk for arsenic and heavy metals in some herbal flowers and their infusions consumed in China. Environ Monit Assess 185:3909–3916

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    European Commission (2016) RASFF—the Rapid Alert System for Food and Feed—2016 annual report [Internet]. Available from: http://ec.europa.eu/food/safety/rasff/docs/rasff_annual_report_2013.pdf

  57. 57.

    European Commission (2017) RASFF Portal. Eur Comm [Internet]. [cited 2017 Dec 19]. Available from: https://webgate.ec.europa.eu/rasffwindow/portal/FAO/WHO.1984. List of contaminants and their maximum levels in foods

  58. 58.

    Brito JAA, Cavaleiro IIB, Fernandes TAP, Gonçalves LML (2013) The feasibility of wavelength dispersive X-ray fluorescence spectrometry for the assessment of lead concentration in animal bone powder. Anal Methods 5:598 Available from: http://xlink.rsc.org/?DOI=c2ay26455b

    Article  CAS  Google Scholar 

  59. 59.

    Fernandes TAP, Brito JAA, Gonçalves LML (2015) Analysis of micronutrients and heavy metals in portuguese infant milk powders by wavelength dispersive X-ray fluorescence spectrometry (WDXRF). Food Anal Methods 8:52–57

    Article  Google Scholar 

  60. 60.

    Bruker (2004) Introduction to X-ray fluorescence analysis, Manual Bruker AXS GmbH. Bruker AXS GmbH, Karlruhe, West Germany

    Google Scholar 

  61. 61.

    US EPA IRIS (2017) Integrated risk information system. US EPA [Internet]. [cited 2017 May 19]. Available from: www.cfpub.epa.gov/ncea/iris/search/index.cfm

  62. 62.

    ICH (2005) ICH Topic Q2 (R1) Validation of analytical procedures: text and methodology. Karlruhe, West Germany [Internet]. [cited 2017 April 20]. Available from: http://www.gmp-compliance.org/guidemgr/files/Q2(R1).PDF

  63. 63.

    EFSA (2013) International frameworks dealing with human risk assessment of combined exposure to multiple chemicals. Available from: http://www.efsa.europa.eu /en/efsajournal/pub/3313.htm

  64. 64.

    US EPA (1989) Risk assessment guidance for superfund. Volume I Human health evaluation manual (Part A). Available from:https://www.epa.gov/sites/production/files/2015-09/documents/ rags_a.pdf%0A https://rais.ornl.gov/documents/HHEMA.pdf

  65. 65.

    US EPA (2000) Risk characterization, science policy council handbook. EPA 100-B-00-002: 1–189. Available from: https://www.epa.gov/sites/production/files/2015-10/documents/osp_risk_characterization_handbook_2000.pdf

  66. 66.

    US EPA (2004) Risk assessment guidance for superfund (RAGS). Volume I. Human health evaluation manual (HHEM). Part E. Supplemental guidance for dermal risk assessment USEPA, office of superfund remediation and technology innovation U.S. Environmental Protection Agency Washington, DC [Internet]. Internet]. [cited 2017 May 19]. Available from: https://www.epa.gov/sites/production/files/2015-09/documents/part_e_final_revision_10-03-07.pdf

  67. 67.

    West B, Welch K, Galecki A (2007) Linear-mixed models—a practical guide using statistical software, FL. Taylor and Francis/CRC Press, Boca Raton

    Google Scholar 

  68. 68.

    Divrikli U, Horzum N, Soylak M, Elci L (2006) Trace heavy metal contents of some spices and herbal plants from western Anatolia, Turkey. Int J Food Sci Technol 41:712–716

    Article  CAS  Google Scholar 

  69. 69.

    JECFA (2010) Food additives. Who Food Addit Ser 64 [Internet].1–17. Available from: http://www.elika.eus/datos/articulos/Archivo_EN581/JEFCA_CdyPb11.pdf#page=528%5Cn http://www.who.int/foodsafety/publications/chem/summary73.pdf

  70. 70.

    Hureau C, Faller P (2009) Aβ-mediated ROS production by Cu ions: structural insights, mechanisms and relevance to Alzheimer’s disease. Biochimie 91:1212–1217 Available from: http://www.sciencedirect.com/science/article/pii/ S0300908409000741

    Article  CAS  PubMed  Google Scholar 

  71. 71.

    Soliman NFE (2015) Metals contents in spices and herbs available on the Egyptian market: assessment of potential human health risk. Open Conf Proc J 6:24–29 Available from: http://benthamopen.com/ABSTRACT/TOPROCJ-6-2-24

    Article  CAS  Google Scholar 

Download references

Funding

Financial support was received from Egas Moniz Cooperativa de Ensino Superior, CRL.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luísa L. Gonçalves.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

• Cinnamon powder brands available in Portuguese market showed differences in trace element concentrations.

• Bulk cinnamon samples presented the highest contents of Al and Fe.

• HQ and HI were lower than 1, indicating that the estimated dietary intake of Cu, Zn, Fe, Al, Cl, Mn, and Sr from daily consumption of 6 g of cinnamon does not present non-carcinogenic risks to consumers’ health.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

L. Gonçalves, L., Fernandes, T., Bernardo, M. et al. Assessment of Human Health Risk of Toxic Elements Due to Cinnamon Ingestion in the Diet. Biol Trace Elem Res 189, 313–324 (2019). https://doi.org/10.1007/s12011-018-1473-0

Download citation

Keywords

  • Cinnamon
  • Elemental analysis
  • WDXRF
  • Toxic metals
  • Risk assessment
  • Hazard index