Skip to main content
Log in

Assessing Essential Trace Elements in Cave Nectar Bat (Eonycteris spelaea): A Study in Barak Valley of Assam, India

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study investigated trace elements in the different organs of Eonycteris spelaea, a hill cave from the Bhuban Hills of Sonai Reserve Forest, Cachar, Assam (India). Six bats were collected from the site and concentrations of four trace elements (Cu, Zn, Fe, and Mn) were examined from the tissues of liver, lungs, kidney, and patagium using graphite furnace atomic absorption spectrometer (graphite furnace model—Analytic Jena Vario-6). The results of the study revealed that concentration of essential trace elements in the body tissues of E. spelaea were less than the maximum permissible limit. During the study, it was found that the concentration of copper in all the four organs are of the following order: liver (3 ± 0.11 μg/g dw) > lungs (2.4 ± 0.14 μg/g dw) > kidney (1.8 ± 0.10 μg/g dw) > patagium (1.8 ± 0.06 μg/g dw). For zinc, this sequence was kidney (61.8 ± 0.32 μg/g dw) > liver (61.2 ± 0.14 μg/g dw) > lungs (58.8 ± 0.19 μg/g dw) > patagium (46.8 ± 0.16 μg/g dw). For manganese, kidney (1.2 ± 0.15 μg/g dw) > lungs (0.6 ± 0.13 μg/g dw) > liver (0.6 ± 0.11 μg/g dw) > patagium (0.6 ± 0.10 μg/g), and for iron, it was liver (98.4 ± 0.22 μg/g) > lungs (78.6 ± 0.47 μg/g dw) > kidney (25.8 ± 0.23 μg/g dw) > patagium (16.2 ± 0.26 μg/g dw). Analysis of variance revealed significant differences (d.f. = 15, F = 44.84, P < 0.01) in the accumulation pattern in all the studied tissues of Eonycteris spelaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ademoroti CMA (1996) Environmental chemistry and toxicology. Ibadan Foludex Press Ltd. 251pp

  2. Agoramoorthy G, Chen FA, Hsu MJ (2008) Threat of heavy metal pollution in halophytic andmangrove plants of Tamil Nadu, India. Environ Pollut 155:320–326

    Article  CAS  PubMed  Google Scholar 

  3. Albretsen J (2006) The toxicity of iron, an essential element. Veterinary Med 82–90

  4. Andersen K (1912) Catalogue of the Chiroptera in the collection of the British Museum. Volume I: Megachiroptera. Trustees British Museum (Natural History), London 854 pp

    Google Scholar 

  5. Angelovičová L, Fazekašová D (2014) Contamination of the soil and water environment by heavy metals in the former mining area of Rudňany (Slovakia). Soil Water Res 9:18–24

    Article  Google Scholar 

  6. Arlettaz R, Christe P, Desfayes M (2002) 33 years, a new longevity record for a European bat. Mammalia 66:441–442

    Google Scholar 

  7. ATSDR (Agency for Toxic Substances and Disease Registry) (1990a) Toxicological profile for manganese (draft). U.S. Public Health Service., U.S. Dept. Health and Human Services, Atlanta, GA, p 4

    Google Scholar 

  8. ATSDR (Agency for Toxic Substances and Disease Registry) (1990b) Toxicological profile for copper (draft). U.S. Public Health Service., U.S. Dept. Health and Human Services, Atlanta, GA, pp 121–191

    Google Scholar 

  9. Ayyamperumal T, Jonathan MP, Srinivasalu S, Armstrong-Altrin JS, Ram-Mohan V (2006) Assessment of acid leachable trace metals in sediment cores from River Uppanar, Cuddalore, southeast coast of India. Environ Pollut 143:34–45

    Article  CAS  PubMed  Google Scholar 

  10. Baishya K, Sarma HP (2012) Effect of agrochemicals application on accumulation of heavy metals on soil of different land uses with respect to its nutrient status. J Environ Sci Toxic Food Tech 8(7):46–54

    Google Scholar 

  11. Banack SA (1998) Diet selection and resource use by flying foxes (genus Pteropus). Ecology 79:1949–1967

    Article  Google Scholar 

  12. Baskaran S, Rathinakumar A, Maruthupandian J, Kaliraj P, Marimuthu G (2016) The effect of daytime rain on the Indian flying fox (Mammalia: Chiroptera: Pteropodidae: Ptreopus giganteus). J Threatened Texa 8(2):8499–8502

    Article  Google Scholar 

  13. Bates PJJ, Harrison DL (1997) Bats of the Indian Subcontinent. Harrison Zoological Museum, Sevenoaks, Kent, UK. 258 pp.

  14. Beyersmann D, Haase H (2011) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. BioMetals 14:331–341

    Article  Google Scholar 

  15. Blossom N (2006) Copper in the ocean environment. American Chemet Corporation. P 1–8

  16. Bollen A, Elsacker LV (2002) Feeding ecology of Pteropus rufus (Pteropodidae) in the littoral forest of Sainte Luce, SE Madagascar. Acta Chiropterologica 4(1):33–47

    Article  Google Scholar 

  17. Bravo A, Harms KE, Emmons LH (2010) Preference for collpa water by frugivorous bats (Artibeus): an experimental approach. Biotropica 42:276–280

    Article  Google Scholar 

  18. Bravo A, Harms KE, Stevens RS, Emmons LH (2008) Collpas: activity hotspots for frugivorous bats (Phyllostomidae) in the Peruvian Amazon. Biotropica 40:203–210

    Article  Google Scholar 

  19. Brown BE (1974) Effects of mine drainage on river Hayle, Cornwall. A) Factors affecting concentrations of copper, zinc and iron in water, sediments and dominant invertebrate fauna. Hydrobiologia 52: 221–233

  20. Bumrungsri S, Lang D, Harrower C, Sripaoraya E, Kitpipit K, Racey PA (2013) The dawn bat, Eonycteris spelaea Dobson (Chiroptera: Pteropodidae) feeds mainly on pollen of economically important food plants in Thailand. Acta Chiropter 15:95–104

    Article  Google Scholar 

  21. Chanu LB, Gupta A (2016) Phytoremediation of lead using Ipomoea aquatica Forsk. in hydroponic solution. Chemosphere 156:407–411

    Article  CAS  Google Scholar 

  22. Clark DR, Prouty RM (1976) Organochlorine residues in three bat species from four localities in Maryland and West Virginia, 1973. Pestic Monit J 10:44–53

    CAS  PubMed  Google Scholar 

  23. Crossgrove J, Zheng W (2004a) Manganese toxicity upon overexposure. NMR Biomed 17:544–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crossgrove J, Zheng W (2004b) Manganese toxicity upon overexposure. NMR Biomed 17(8):544–553. https://doi.org/10.1002/nbm.931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Das S, Gupta A (2012) Effects of cadmium chloride on oxygen consumption and gill morphology of Indian flying barb, Esomus danricus. J Environ Biol 33:1057–1061

    CAS  PubMed  Google Scholar 

  26. Desai V, Kaler SG (2008) Role of copper in human neurological disorders. Am J Clin Nutr 88:855S–858S

    Article  CAS  PubMed  Google Scholar 

  27. Dev B, Gupta A, Bhattacharjee PC (2010) Heavy metals in egg shells of six species of Ardeidae (Aves) from Barak Valley, Assam. Assam Uni J Sci Technol: Biol Environ Sci 5:48–52

  28. Devi BC, Kumari KK, Vaddana J, Indravathi G (2014) Manganese induced toxic effects on oxidative system and mRNA expression of Mn-Sod and Gpx in albino rat brain: protective effect of AlphaTocopherol. International Journal of Innovative Research in Science, Engineering and Technology. 3(2): 9252–9262

  29. Doebrich J (2009) Copper: a metal for the ages. US Geological Survey. https://pubs.usgs.gov/fs/2009/3031/FS2009-3031.pdf

  30. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Inter J Phys Sci 2(5):112–118

    Google Scholar 

  31. Elbagermi MA, Edwards HGM, Alajtal AI (2012) Monitoring of heavy metal content in fruits and vegetables. Int Sch Res Net Anal Chem Article I D 827645

  32. Fenton MB (1997) Science and the conservation of bats. J Mammal 78:1–14

    Article  Google Scholar 

  33. Flache L, Becker NI, Kierdorf U, Czarnecki S, Düring RA, Encarnaçao JA (2015) Hair samples as monitoring units for assessing metal exposure of bats: a new tool for risk assessment. Mamm Biol 80(3):178–181

    Article  Google Scholar 

  34. Fleming TH, Kress WJ (2011) A brief history of fruits and frugivores. Acta Oecol 37:521–530

    Article  Google Scholar 

  35. Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51(2):225–227

    Article  CAS  PubMed  Google Scholar 

  36. Fraga CG, Oteiza PI (2005) Iron toxicity and antioxidant nutrients. Toxicology 180:23–32

    Article  Google Scholar 

  37. Francis AA, Forsyth C (1995) Toxicity summary for manganese. Oak Ridge Reservation Environmental Restoration Program, préparé pour le US Department of Energy

  38. Frydrych A, Arct J, Kasiura K (2004) Zinc: a critical importance element in cosmetology. J Appl Cosmetol 22:1–13

    CAS  Google Scholar 

  39. Gamakaranage CS, Rodrigo C, Weerasinghe S, Gnanathasan A, Puvanaraj V, Fernando H (2011) Complications and management of acute copper sulphate poisoning; a case discussion. J Occup Med Toxicol 6:34. https://doi.org/10.1186/1745-6673-6-34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghanem SJ, Ruppert H, Kunz TH, Voigt CC (2013) Frugivorous bats drinks nutrient and clay enriched water in Amazonian rain forest: support for a dual function of mineral-lick visit. J Trop Ecol 29:1–10

    Article  Google Scholar 

  41. Grasman KH (2002) Assessing Immunological Function in Toxicological Studies of Avian Wildlife. Integr Comp Biol 42:34–42

    Article  CAS  PubMed  Google Scholar 

  42. Greentree WF, & Hall JO (1995) Iron toxicosis. In: Bonagura JD, ed. Kirk’s current therapy XII small animal practice. Philadelphia, Pa: WB Saunders Co. 240–242

  43. Gunter J, Kundig JAK (1999) Copper: trade, manufacture, use and environmental status. ASM international, Materials park, OH. 44073–0002, ISBN 0-87170-656-3, SAN 204-7586

  44. Gupta CP (2014) Role of iron (Fe) in body. IOSR Journal of Applied Chemistry (IOSR-JAC) 7(11):38–46

    Article  Google Scholar 

  45. Gurzau ES, Neagu C, Gurzau AE (2003) Essential metals—case study on iron. Ecotoxicol Environ Saf 56:190–200

    Article  CAS  PubMed  Google Scholar 

  46. Hamidullah A, Saifullah S, Shah NT (1997) Heavy metals pollution in eastern part of metropolis. Proc. N.S.M.T.C.C. 97. Environ Pollut:24–26

  47. Hariono B, Ng J, Sutton RH (1993) Lead Concentrations in Tissues of Fruit Bats (Pteropus sp.) in Urban and Non-urban Locations. Wildl Res 20:315–320

    Article  Google Scholar 

  48. He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19(2–3):125–140

    Article  CAS  PubMed  Google Scholar 

  49. Hernout BV, Arnold KE, Mcclean CJ, Walls M, Baxter, ABA (2016) Boxall A national level assessment of metal contamination in bats. Environ Pollut Pp 847–858, 214

  50. Hoenerhoff M, Williams K (2004) Copper-associated hepatopathy in a Mexican fruit bat (Artibeus jamaicensis) and establishment of a reference range for hepatic copper in bats. J Vet Diagn Investig 16:590–593

    Article  CAS  Google Scholar 

  51. Howe P, Malcolm H, Dobson S (2014) Manganese and its compounds: environmental aspects. Geneva, Switzerland: World Health Organization. p. 63

  52. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jenkins RKB, Racey PA (2008) Bat as bushmeat in Madagasker. Madagascar conservation development 3(1):22–30

    Google Scholar 

  54. Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ (2001) Environmental copper: its dynamics and human exposure issues. J Toxicol Environ Health, Part B: Critical Reviews 4(4):341–394. https://doi.org/10.1080/109374001753146207

    Article  CAS  Google Scholar 

  55. Kabir E, Ray S, Kim KH, Yoon HO, Jeon EC (2012) Current ststus of trace metal pollution in soils affected in industrial activities. Sci World J 9(1):6705

    Google Scholar 

  56. Keen CL, Ensunsa JL, Clegg MS (2000) Manganese metabolism in animals and humans including the toxicity of manganese. In Manganese and its Role in Biological Processes, Sigel A, Sigel H (eds). Marcel Dekker: New York. 89–121

  57. Khaled A (2004) Heavy metal concentrations in certain tissues of five commercially important fishes from El-Mex Bay, Alexandria, Egypt. Egyptian journal of aquatic biology and fisheries. 8: 51

  58. Khan AT, Diffay BC, Forester DM, Thompson SJ (1995) Trace element concentrations in tissues of goats from Alabama. Vet Hum Toxicol 37:327–329

    CAS  PubMed  Google Scholar 

  59. Klaassen C (2013) Toxicology: the basic science of poisons. Kindle edition. McGraw Hill Publishers. pp. 65–100

  60. Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J (2008) Body iron metabolism and pathophysiology of iron overload. Int J Hematol 88:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Komarnicki GJK (2000) Tissue, sex and age specific accumulation of heavy metals (Zn, Cu, Pb, Cd) by populations of the mole (Talpa europaea L.) in a central urban area. Chemosphere 41:1593–1602

    Article  CAS  PubMed  Google Scholar 

  62. Kunz TH (1982) Ecology of bats. Plenum Press, New York, p 425

    Book  Google Scholar 

  63. Lenntech Water Treatment and Air Purification (2004) Water treatment, Published by Lenntech, Rotterdamseweg, Netherlands (www.excelwater.com/thp/filters/Water-Purification.htm). McCluggage D (1991). Heavy Metal Poisoning, NCS

  64. Lobova TA, Geiselman CK, Mori SA (2009) Seed dispersal by bats in the Neotropics. New York Botanical Garden Press, New York, New York

  65. Luftl S, Freitag B, Deutz A, Steineck T, Tataruch F (2005) Concentrations of organochlorine pesticides and PCBs in the liver of European bats (Microchiroptera). Fresenius Environ Bull 14:167–172

    Google Scholar 

  66. Madsen E, Gitlin JD (2007) Copper and iron disorders of the brain. Annu Rev Neurosci 30:31–37

    Article  CAS  Google Scholar 

  67. Mansur UD, Jazuli A (2007) Irrigation and heavy metals pollution in soils under urban and peri-uban agriculture system. Int J Pure Appl Sci 1(3):37–42

    Google Scholar 

  68. Medvedev N (1995) Concentrations of cadmium, lead and sulphur in tissues of wild, forest reindeer from North-West Russia. Environ Pollut 90:1–5

    Article  CAS  PubMed  Google Scholar 

  69. Mehri A, Marjan RF (2013) Trace elements in human nutrition: a review. Int J Med Invests 2(3):115–128

    Google Scholar 

  70. Mendez L, Alvarez-Castaneda ST (2000) Comparative analysis of heavy metals in two species of Ichthyophagous bats Myotis vivesi and Noctilio leporinus. Bull Environ Contam Toxicol 65(1):51–54

    Article  CAS  PubMed  Google Scholar 

  71. Mickleburgh SP, Hutson AM, Racey PA (1992) Old world fruit bats: action plan for their conservation. IIJCN-SSC Chiroptera Specialist Group, World Conservation Union, Gland, Switzerland

  72. Mickleburgh SP, Hutson AM, Racey PA (2002) A review of the global conservation status of bats. Oryx 36(1):18–34

    Article  Google Scholar 

  73. Nadadur SS, Srirama K (2008) Anuradha Mudipalli. Iron transport & homeostasis mechanisms: their role in health & disease. Indian J Med Res 128: 533–544

  74. Nakamoto A, Kinjo K, Izawa M (2007) Food habits of Orii’s flying-fox, Pteropus dasymallus inopinatus, in relation to food availability in an urban area of Okinawa-jima Island, the Ryukyu Archipelago, Japan. Acta Chiropterologica 9(1):237–249

    Article  Google Scholar 

  75. Nielsen FH (1993) Essential and toxic elements in human health and disease, an update. Wiley-Liss, New York, p 355

    Google Scholar 

  76. Nighat S, Iqbal S, Nadeem M, Sajid N, Mahmood T, Shah SI (2013) Estimation of heavy metal residues from the feathers of Falconidae, Accipitridae, and Strigidae in Punjab, Pakistan. Turk J Zool 37:488–500

    CAS  Google Scholar 

  77. Nighat S, Nadeem MS, Mahmood T, Kayani AR, Mushtaq M, Hassan MM (2016) Estimation of Heavy Metals in Indian Flying Fox Pteropus giganteus (Brünnich, 1782) from Punjab, Pakistan. Pakistan J Zool 48(6):1787–1792

    CAS  Google Scholar 

  78. Oon S, Yap CH, Ihle BU (2006) Acute copper toxicity following copper glycinate injection. Intern Med J 36:741–743. https://doi.org/10.1111/j.1445-5994.2006.01195.x

    Article  CAS  PubMed  Google Scholar 

  79. Opresko DM (1992) Toxicity summary for zinc and zinc compounds, Chemical Hazard Evaluation and Communication Group, Biomedical and Environmental Information Analysis Section, Health and Safety Research Division - Prepared for Oak Ridge Reservation Environmental Restoration Program, Oak Ridge, Tennessee

  80. Pikula J, Zukal J, Adam V, Bandouchova H, Beklova M, Hajkova P, Horakova J, Kizek R, Valentikovay V (2010) Heavy metals and metallothionein in Vespertilionid bats foraging over aquatic habitats in the Czech republic. Environ Toxicol Chem 29(3):501–506

    Article  CAS  PubMed  Google Scholar 

  81. Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Popescu IV, Dima G, Dinu S (2010) The content of heavy metals in pollen from Dambovita region. J Sci Art 1(12):171–174

    Google Scholar 

  83. Reimann C, de Caritat P (1998) Chemical elements in the environment factsheets for the geochemist and environmental scientist. Berlin: Springer-Verlag. ISBN 3-540-63670-6

  84. Rice KC, Conko KM, Hornberger GM (2002) Anthropogenic sources of arsenic and copper to sediments in a suburban lake, northern Virginia. Environ Sci Technol 36:4962–4967

    Article  CAS  PubMed  Google Scholar 

  85. Salomon F (2014) Impacts of metals on aquatic ecosystems and human health. Environ Communities P 14–18

  86. Seibold S, Buchner J, Bässler C, Müller J (2013) Ponds in acidic mountains are more important for bats in providing drinking water than insect prey. J Zool 290:302–308

    Article  Google Scholar 

  87. Sigel H, Sigel A. (1990) Metal ions in biological systems: Volume 26: Compendium on Magnesium and Its Role in Biology: Nutrition and Physiology. CRC Press. pp 768

  88. Wei YH, Zhang JY, Zhang DW, Tu TH, Luo LG (2014) Metal concentrations in various fish organs of different fish species from Poyang Lake, China. Ecotoxicology and Environmental Safety

  89. Shallari S, Schwartz C, Hasko A, Morel JL (1998) Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ 19:133–142

    Article  Google Scholar 

  90. Singh P, Dey M, Ramanujam SN (2016) A study on bioaccumulation of heavy metals in two anuran tadpoles: Clinotarsus alticola and Leptobrachium smithi from Rosekandy tea estate, Cachar, Assam. Curr World Environ 11(1):325–332

    Article  Google Scholar 

  91. Solayman M, Islam MA, Paul S, Ali Y, Khalil MI, Nadia Alam N, Gan SH (2016) Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: a comprehensive review. Compr Rev Food Sci Food Saf 15:219–233

    Article  CAS  Google Scholar 

  92. Streit B, Nagel A (1993) Heavy metal transfer by lactation in a bat colony. Fresenius Environ Bull 2:168–173

    CAS  Google Scholar 

  93. Sutton RH, Hariono B (1987) Lead poisoning in flying foxes (Chiroptera:Pteropodidae). Aust Mammal 10:125–126

    Google Scholar 

  94. Tayab ME (1991) Environmental impact of heavy metal pollution in natural aquatic systems. A thesis submitted for the degree of doctor of philosophy. University of west London

  95. URL 1-The copper advantage—a guide to working with copper and copper alloys. Available online https://www.copper.org/publications/pub_list/pdf/a1360.pdf (accessed on 11 February, 2018)

  96. Uysal H, Tuncer S, Yaramaz O (1986) A comparative study on the heavy metals present in eatable organisms in the coasts of Eagean Sea. Çevre. 86 Sempozyum, 2–5 Haz., İzmir (In Turkish)

  97. Van Loon J (1985) Selected methods of trace metal analysis. Biological and environmental samples. Wiley Interscience U.S.A.

  98. Voigt CC, Capps KA, Dechmann DKN, Michener RH, Kunz TH (2008) Nutrition or detoxification: why bats visit mineral licks of the Amazonian rainforest. PLoS One 3(4):11

    Article  CAS  Google Scholar 

  99. Wada O (2004) What are trace elements? Their deficiency and excess states. JMAJ 47(8):351–358

    Google Scholar 

  100. Walker LA, Bailey LJ, Shore RF (2002) The importance of the gut and its contents in prey as a source of cadmium to predators. Environ Toxicol Chem 21:76–80

    Article  CAS  PubMed  Google Scholar 

  101. Walker LA, Simpson VR, Rockett L, Wienburg CL, Shore RF (2007) Heavy metal contamination in bats in Britain. Environ Pollut 148:483–490

    Article  CAS  PubMed  Google Scholar 

  102. Walker-Smith JA, Blomfield J (1973) Archives of disease in childhood, 48, 476. Wilson’s disease or chronic copper poisoning? Arch Dis Child 48:476–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang B, Feng W, Wang M, Wang T, Gu Y, Zhu M, Ouyang H, Shi J, Zhang F, Zhao Y, Chai Z, Wang H, Wang J (2008) Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276

    Article  CAS  Google Scholar 

  104. WebMD (2018) Iron poisoning. Webmd.com. Date of access: 25.05/2018

  105. WHO (1989) Lead-environmental aspects: environmental health criteria. World Health Organisation, International Programme on Chemical Safety (IPCS), Geneva, p 85

    Google Scholar 

  106. Williams M, Todd GD, Roney N, Crawford J, Coles C, McClure PR (2012) Toxicological profile for manganese. Atlanta GA: Agency for Toxic Substances and Disease Registry

  107. Yousafzai AM, Shakoori AR (2008) Heavy metal accumulation in the gills of an endangered South Asian fresh water fish as an indicator of aquatic pollution. Pakistan J Zool 40:423–430

    CAS  Google Scholar 

  108. Zukala J, Pikulab J, Bandouchovab H (2015) Bats as bioindicators of heavy metal pollution: history and prospect. Mamm Biol 80:220–227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthankar Choudhury.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Highlight:

• Essential trace metals accumulation varied among different tissues of the Eonycteris spelaea.

• Cu, Zn, Fe, and Mn were found bellow permissible level in the body of Eonycteris spelaea in the Barak valley indicating forested areas are still less affected by anthropogenic pollution.

• Accumulation of zinc was highest in the kidney and patagium than in the liver and lungs whereas iron was more in the liver and lungs than in the patagium and kidney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A., Choudhury, P. & Talukdar, N.R. Assessing Essential Trace Elements in Cave Nectar Bat (Eonycteris spelaea): A Study in Barak Valley of Assam, India. Biol Trace Elem Res 188, 451–460 (2019). https://doi.org/10.1007/s12011-018-1431-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1431-x

Keywords

Navigation