Biological Trace Element Research

, Volume 187, Issue 2, pp 499–505 | Cite as

Effects of Fluoride on Autophagy in Mouse Sertoli Cells

  • Zhiyuan Feng
  • Chen Liang
  • Ram Kumar Manthari
  • Chong Wang
  • Jianhai ZhangEmail author


Fluoride had been reported to damage the structure and function of testicular tissues and reproductive cells; however, the mechanisms underlying its toxicity remained unclear. Autophagy plays a key role in reproductive function. In this study, we aimed to investigate the effect of fluoride on autophagy in Sertoli cells. Sertoli cells were exposed to 0, 0.125, 0.25, and 0.5 mM NaF for 24 h. The results showed that fluoride exposure up-regulated Beclin1 and p62 mRNA and protein expression levels with concomitant down-regulated mRNA and protein expression levels of LC3 and Atg5. In conclusion, exposure to fluoride impaired the autophagy process in Sertoli cells, which could be one of fluoride’s mechanisms in male reproductive toxicity.


Fluoride Reproductive toxicity Sertoli cells Autophagy 


Funding Information

This work was supported by the National Natural Science Foundation (Grant No. 31741120, 30172380) of China and the Research Project is supported by the Shanxi Scholarship Council of China (Grant No. 2017-071).

Compliance with Ethical Standards

All regulations of the Institutional Animal Care and Use Committee of Shanxi Agricultural University were strictly followed during the experiment to protect the welfare of the animals.

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Suzuki M, Shin M, Simmer JP, Bartlett JD (2014) Fluoride affects enamel protein content via TGF-beta1-mediated KLK4 inhibition. J Dent Res 93(10):1022–1027. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Everett ET (2011) Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J Dent Res 90(5):552–560. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pereira HA, Leite AL, Charone S, Lobo JG, Cestari TM, Peresbuzalaf C, Buzalaf MA (2013) Proteomic analysis of liver in rats chronically exposed to fluoride. PLoS One 8(9):e75343CrossRefGoogle Scholar
  4. 4.
    Cao J, Chen J, Xie L, Wang J, Feng C, Song J (2015) Protective properties of sesamin against fluoride-induced oxidative stress and apoptosis in kidney of carp (Cyprinus carpio) via JNK signaling pathway. Aquat Toxicol 167:180–190. CrossRefPubMedGoogle Scholar
  5. 5.
    Akinrinade ID, Memudu AE, Ogundele OM (2015) Fluoride and aluminium disturb neuronal morphology, transport functions, cholinesterase, lysosomal and cell cycle activities. Pathophysiology : Official J Int Soc Pathophysiology 22(2):105–115. CrossRefGoogle Scholar
  6. 6.
    Wang HW, Zhao WP, Tan PP, Liu J, Zhao J, Zhou BH (2017) The MMP-9/TIMP-1 system is involved in fluoride-induced reproductive dysfunctions in female mice. Biol Trace Elem Res 178(2):253–260. CrossRefPubMedGoogle Scholar
  7. 7.
    Ortiz-Pérez D, Rodrı́Guez-Martı́Nez M, Martı́Nez F, Borja-Aburto VCH, Castelo J, Grimaldo JI, Cruz EDL, Carrizales L, Dı́Az-Barriga F (2003) Fluoride-induced disruption of reproductive hormones in men. Environ Res 93(1):20–30CrossRefGoogle Scholar
  8. 8.
    Huang C, Niu R, Wang J (2017) Toxic effects of sodium fluoride on reproductive function in male mice. Fluoride 40(3):162–168Google Scholar
  9. 9.
    Narayana MV, Chinoy NJ (1994) Effect of fluoride on rat testicular steroidogenesis. Fluoride 27(1):7–12Google Scholar
  10. 10.
    Susheela AK, Kumar A (1991) A study of the effect of high concentrations of fluoride on the reproductive organs of male rabbits, using light and scanning electron microscopy. J Reproduction Fertility 92(2):353–360CrossRefGoogle Scholar
  11. 11.
    Jian L, Yan S, Hua F, Li Y, Zhu Y, Lin X, Zhang J (2017) Effects of fluoride on surface structure of primary culture Leydig cells in mouse. Biol Trace Elem Res:1–5Google Scholar
  12. 12.
    Zhao WP, Wang HW, Liu J, Tan PP, Luo XL, Zhu SQ, Chen XL, Zhou BH (2018) Positive PCNA and Ki-67 expression in the testis correlates with spermatogenesis dysfunction in fluoride-treated rats. Biol Trace Elem Res.
  13. 13.
    Wang HW, Zhao WP, Liu J, Tan PP, Zhang C, Zhou BH (2017) Fluoride-induced oxidative stress and apoptosis are involved in the reducing of oocytes development potential in mice. Chemosphere 186:911–918CrossRefGoogle Scholar
  14. 14.
    Chojnacka K, Zarzycka M, Mruk DD (2016) Biology of the Sertoli cell in the fetal, pubertal, and adult mammalian testis. Springer International Publishing,Google Scholar
  15. 15.
    Gupta RS, Khan TI, Agrawal D, Kachhawa JB (2007) The toxic effects of sodium fluoride on the reproductive system of male rats. Toxicol Ind Health 23(9):507–513. CrossRefPubMedGoogle Scholar
  16. 16.
    Yang Y, Lin X, Huang H, Feng D, Ba Y, Cheng X, Cui L (2015) Sodium fluoride induces apoptosis through reactive oxygen species-mediated endoplasmic reticulum stress pathway in Sertoli cells. J Environ Sci (China) 30:81–89. CrossRefGoogle Scholar
  17. 17.
    Sun Z, Nie Q, Zhang L, Niu R, Wang J, Wang S (2017) Fluoride reduced the immune privileged function of mouse Sertoli cells via the regulation of Fas/FasL system. Chemosphere 168:318–325. CrossRefPubMedGoogle Scholar
  18. 18.
    Cui J, Lu K, Shi Y, Chen B, Tan SH, Gong Z, Shen HM (2015) Integrated and comparative miRNA analysis of starvation-induced autophagy in mouse embryonic fibroblasts. Gene 571(2):194–204. CrossRefPubMedGoogle Scholar
  19. 19.
    Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741. CrossRefPubMedGoogle Scholar
  20. 20.
    Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833(12):3448–3459. CrossRefPubMedGoogle Scholar
  21. 21.
    Ramesh N, Pandey UB (2017) Autophagy dysregulation in ALS: when protein aggregates get out of hand. Front Mol Neurosci 10:263. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Carchman EH, Matkowskyj KA, Meske L, Lambert PF (2016) Dysregulation of autophagy contributes to anal carcinogenesis. PLoS One 11(10):e0164273. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM (2014) Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 10(12):2208–2222. CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang S, Niu Q, Gao H, Ma R, Lei R, Zhang C, Xia T, Li P, Xu C, Wang C, Chen J, Dong L, Zhao Q, Wang A (2016) Excessive apoptosis and defective autophagy contribute to developmental testicular toxicity induced by fluoride. Environ Pollut 212:97–104. CrossRefPubMedGoogle Scholar
  25. 25.
    Suzuki M, Bandoski C, Bartlett JD (2015) Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling. Free Radic Biol Med 89:369–378. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Suzuki M, Bartlett JD (2014) Sirtuin1 and autophagy protect cells from fluoride-induced cell stress. Biochim Biophys Acta 1842(2):245–255. CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang J, Zhu Y, Shi Y, Han Y, Liang C, Feng Z, Zheng H, Eng M, Wang J (2017) Fluoride-induced autophagy via the regulation of phosphorylation of mammalian targets of rapamycin in mice Leydig cells. J Agric Food Chem 65(40):8966–8976. CrossRefPubMedGoogle Scholar
  28. 28.
    Biederbick A, Kern HF, Elsässer HP (1995) Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 66(1):3PubMedGoogle Scholar
  29. 29.
    WHO (2011) Guidelines for drinking-water quality 4th Ed.Google Scholar
  30. 30.
    Iliadou P, Tsametis C, Kaprara A, Papadimas I, Goulis D (2015) The Sertoli cell: Novel clinical potentiality. Hormones (Athens) 14(4):504–514Google Scholar
  31. 31.
    Arck P, Solano ME, Walecki M, Meinhardt A (2014) The immune privilege of testis and gravid uterus: same difference? Mol Cell Endocrinol 382(1):509–520. CrossRefPubMedGoogle Scholar
  32. 32.
    Chen S, Liu Y (2015) Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. Reproduction 149(4):R159–R167CrossRefGoogle Scholar
  33. 33.
    Gao Y, Mruk DD, Cheng CY (2015) Sertoli cells are the target of environmental toxicants in the testis—a mechanistic and therapeutic insight. Expert Opin Ther Targets 19(8):1073–1090. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Morel E, Mehrpour M, Botti J, Dupont N, Hamai A, Nascimbeni AC, Codogno P (2017) Autophagy: a druggable process. Annu Rev Pharmacol Toxicol 57:375–398. CrossRefPubMedGoogle Scholar
  35. 35.
    Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20(3):460–473. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kim KH, Lee M-S (2014) Autophagy—a key player in cellular and body metabolism. Nat Rev Endocrinol 10(6):322–337. CrossRefPubMedGoogle Scholar
  37. 37.
    Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282(52):37298–37302. CrossRefPubMedGoogle Scholar
  38. 38.
    Zhou BH, Zhao J, Liu J, Zhang JL, Li J, Wang HW (2015) Fluoride-induced oxidative stress is involved in the morphological damage and dysfunction of liver in female mice. Chemosphere 139:504–511. CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang S, Jiang C, Liu H, Guan Z, Zeng Q, Zhang C, Lei R, Xia T, Gao H, Yang L, Chen Y, Wu X, Zhang X, Cui Y, Yu L, Wang Z, Wang A (2013) Fluoride-elicited developmental testicular toxicity in rats: roles of endoplasmic reticulum stress and inflammatory response. Toxicol Appl Pharmacol 271(2):206–215. CrossRefPubMedGoogle Scholar
  40. 40.
    Sharma R, Tsuchiya M, Bartlett JD (2008) Fluoride induces endoplasmic reticulum stress and inhibits protein synthesis and secretion. Environ Health Perspect 116(9):1142–1146. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Deng H, Kuang P, Cui H, Chen L, Luo Q, Fang J, Zuo Z, Deng J, Wang X, Zhao L (2016) Sodium fluoride (NaF) induces the splenic apoptosis via endoplasmic reticulum (ER) stress pathway in vivo and in vitro. Aging (Albany NY) 8(12):3552–3567CrossRefGoogle Scholar
  42. 42.
    Liu H, Hou C, Zeng Q, Zhao L, Cui Y, Yu L, Wang L, Zhao Y, Nie J, Zhang B, Wang A (2016) Role of endoplasmic reticulum stress-induced apoptosis in rat thyroid toxicity caused by excess fluoride and/or iodide. Environ Toxicol Pharmacol 46:277–285. CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang Y, Zhang K, Ma L, Gu H, Li J, Lei S (2016) Fluoride induced endoplasmic reticulum stress and calcium overload in ameloblasts. Arch Oral Biol 69:95–101. CrossRefPubMedGoogle Scholar
  44. 44.
    Song S, Tan J, Miao Y, Li M, Zhang Q (2017) Crosstalk of autophagy and apoptosis: involvement of the dual role of autophagy under ER stress. J Cell Physiol 232(11):2977–2984. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary MedicineShanxi Agricultural UniversityTaiguPeople’s Republic of China
  2. 2.Medical Experiment CenterShaanxi University of Chinese MedicineXianyangPeople’s Republic of China

Personalised recommendations