The Importance of Se-Related Genes in the Chondrocyte of Kashin–Beck Disease Revealed by Whole Genomic Microarray and Network Analysis

Abstract

Kashin–Beck disease (KBD) is an endemic, chronic, and degenerative osteoarthropathy. Selenium (Se) deficiency plays important role in the pathogenesis of KBD. We aimed to screen Se-related gene from chondrocytes of patients with KBD. Whole-genome oligonucleotide microarrays were used to detect differentially expressed genes. qRT-PCR was used to confirm the microarray results. Comparative Toxicogenomics Database (CTD) was used to screen Se-related genes from differentially expressed genes. Gene Ontology (GO) classifications and network analysis of Se-related genes were constituted by STRING online system. Three hundred ninety-nine differentially expressed genes were obtained from microarray. Among them, 54 Se-related genes were identified by CTD. The qRT-PCR validation showed that four genes expressed similarly with the ones in the microarray transcriptional profiles. The Se-related genes were categorized into 6 cellular components, 8 molecular functions, 44 biological processes, 10 pathways, and 1 network by STRING. The Se-related gene insulin-like growth factor binding protein 2 (IGFBP2), insulin-like growth factor binding protein 3 (IGFBP3), interleukin 6 (IL6), BCL2, apoptosis regulator (BCL2), and BCL2-associated X, apoptosis regulator (BAX), which involved in many molecular functions, biological processes, and apoptosis pathway may play important roles in the pathogenesis of KBD.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Wang S, Guo X, Wang W, Wang S (2012) Genome-wide study identifies the regulatory gene networks and signaling pathways from chondrocyte and peripheral blood monocyte of Kashin-Beck disease. Genes Cells 17:619–632. https://doi.org/10.1111/j.1365-2443.2012.01620.x

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Yao Y, Pei F, Kang P (2011) Selenium, iodine, and the relation with Kashin-Beck disease. Nutrition 27:1095–1100. https://doi.org/10.1016/j.nut.2011.03.002

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Wang S, Duan C, Zhang F, Wang X, Guo X (2016) The roles of the interaction of BCL2-antagonist/killer 1, apoptotic peptidase activating factor 1 and selenium in the pathogenesis of Kashin-Beck disease. Biol Trace Elem Res 170:17–24. https://doi.org/10.1007/s12011-015-0424-2

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Xiong YM, Mo XY, Zou XZ, Song RX, Sun WY, Lu W, Chen Q, Yu YX, Zang WJ (2010) Association study between polymorphisms in selenoprotein genes and susceptibility to Kashin-Beck disease. Osteoarthr Cartil 18:817–824. https://doi.org/10.1016/j.joca.2010.02.004

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Du X, Dai XX, Xia SR, Zou XZ, Yan SW, Mo XY, Lu BG, Xiong YM (2012) SNP and mRNA expression for glutathione peroxidase 4 in Kashin-Beck disease. Br J Nutr 107:164–169. https://doi.org/10.1017/S0007114511002704

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Wang J, Li H, Li Y, Yu J, Yang L, Feng F, Chen Z (2013) Speciation, distribution, and bioavailability of soil selenium in the Tibetan Plateau Kashin-beck disease area-a case study in Songpan County, Sichuan Province, China. Biol Trace Elem Res 156:367–375. https://doi.org/10.1007/s12011-013-9822-5

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Yang HJ, Zhang Y, Wang ZL, Xue SH, Li SY, Zhou XR, Zhang M, Fang Q, Wang WJ, Chen C, Deng XH, Chen JH (2017) Increased chondrocyte apoptosis in Kashin-Beck disease and rats induced by T-2 toxin and selenium deficiency. Biomed Environ Sci 30:351–362. https://doi.org/10.3967/bes2017.046

    Article  PubMed  Google Scholar 

  8. 8.

    Dai X, Li Y, Zhang R, Kou Y, Mo X, Cao J, Xiong Y (2016) Effects of sodium selenite on c-Jun N-terminal kinase signalling pathway induced by oxidative stress in human chondrocytes and c-Jun N-terminal kinase expression in patients with Kashin-Beck disease, an endemic osteoarthritis. Br J Nutr 115:1547–1555. https://doi.org/10.1017/S0007114516000362

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Yu FF, Zhang YX, Zhang LH, Li WR, Guo X, Lammi MJ (2016) Identified molecular mechanism of interaction between environmental risk factors and differential expression genes in cartilage of Kashin-Beck disease. Medicine (Baltimore) 95:e5669. https://doi.org/10.1097/MD.0000000000005669

    CAS  Article  PubMed Central  Google Scholar 

  10. 10.

    Chen J, Chu Y, Cao J, Yang Z, Guo X, Wang Z (2006) T-2 toxin induces apoptosis, and selenium partly blocks, T-2 toxin induced apoptosis in chondrocytes through modulation of the Bax/Bcl-2 ratio. Food Chem Toxicol 44:567–573. https://doi.org/10.1016/j.fct.2005.09.004

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Zhou X, Wang Z, Chen J, Wang W, Song D, Li S, Yang H, Xue S, Chen C (2014) Increased levels of IL-6, IL-1beta, and TNF-alpha in Kashin-Beck disease and rats induced by T-2 toxin and selenium deficiency. Rheumatol Int 34:995–1004. https://doi.org/10.1007/s00296-013-2862-5

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Wang X, Wang S, He S, Zhang F, Tan W, Lei Y, Yu H, Li Z, Ning Y, Xiang Y, Guo X (2013) Comparing gene expression profiles of Kashin-Beck and Keshan diseases occurring within the same endemic areas of China. Sci China Life Sci 56:797–803. https://doi.org/10.1007/s11427-013-4495-z

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Wu SX, Wang WZ, Zhang F, Wu CY, Dennis BS, Qu CJ, Bai YD, Guo X (2014) Expression profiles of genes involved in apoptosis and selenium metabolism in articular cartilage of patients with Kashin-Beck osteoarthritis. Gene 535:124–130. https://doi.org/10.1016/j.gene.2013.11.050

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Wang X, Ning Y, Tan W, Yu H, Li Z, Guo X (2016) Population-based comparative analysis of differentially expressed genes between Kashin-Beck disease grades I and II. Scand J Rheumatol 45:230–235. https://doi.org/10.3109/03009742.2015.1058416

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, Wiegers J, Wiegers TC, Mattingly CJ (2017) The Comparative Toxicogenomics Database: update 2017. Nucleic Acids Res 45:D972–D978. https://doi.org/10.1093/nar/gkw838

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Liu R, Fan L, Yin L, Wang K, Miao W, Song Q, Dang X, Gao H, Bai C (2015) Comparative study of serum proteomes in Legg-Calve-Perthes disease. BMC Musculoskelet Disord 16:281. https://doi.org/10.1186/s12891-015-0730-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Wang S, Duan C, Liu H, Shao W, Wu C, Han J, Guo X (2016) The roles of selenium, insulin-like growth factor binding protein 2 and suppressor of cytokine signaling 3 in the pathogenesis of Kashin-Beck disease. Biomarkers 21:409–415. https://doi.org/10.3109/1354750X.2016.1141990

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Schlicht M, Matysiak B, Brodzeller T, Wen X, Liu H, Zhou G, Dhir R, Hessner MJ, Tonellato P, Suckow M, Pollard M, Datta MW (2004) Cross-species global and subset gene expression profiling identifies genes involved in prostate cancer response to selenium. BMC Genomics 5(58):58. https://doi.org/10.1186/1471-2164-5-58

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Le Roith D, Bondy C, Yakar S, Liu JL, Butler A (2001) The somatomedin hypothesis: 2001. Endocr Rev 22:53–74. https://doi.org/10.1210/edrv.22.1.0419

    Article  PubMed  Google Scholar 

  20. 20.

    Gao ZQ, Guo X, Duan C, Ma W, Xu P, Wang W, Chen JC (2012) Altered aggrecan synthesis and collagen expression profiles in chondrocytes from patients with Kashin-Beck disease and osteoarthritis. J Int Med Res 40:1325–1334. https://doi.org/10.1177/147323001204000411

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Kiepe D, Ulinski T, Powell DR, Durham SK, Mehls O, Tonshoff B (2002) Differential effects of insulin-like growth factor binding proteins-1, -2, -3, and -6 on cultured growth plate chondrocytes. Kidney Int 62:1591–1600. https://doi.org/10.1046/j.1523-1755.2002.00603.x

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Patil SS, Railkar R, Swain M, Atreya HS, Dighe RR, Kondaiah P (2015) Novel anti IGFBP2 single chain variable fragment inhibits glioma cell migration and invasion. J Neuro-Oncol 123:225–235. https://doi.org/10.1007/s11060-015-1800-7

    CAS  Article  Google Scholar 

  23. 23.

    Wei Z, Li HH (2015) IGFBP-3 may trigger osteoarthritis by inducing apoptosis of chondrocytes through Nur77 translocation. Int J Clin Exp Pathol 8:15599–15610

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Evans DS, Cailotto F, Parimi N, Valdes AM, Castano-Betancourt MC, Liu Y, Kaplan RC, Bidlingmaier M, Vasan RS, Teumer A et al (2015) Genome-wide association and functional studies identify a role for IGFBP3 in hip osteoarthritis. Ann Rheum Dis 74:1861–1867. https://doi.org/10.1136/annrheumdis-2013-205020

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Makki MS, Haseeb A, Haqqi TM (2015) MicroRNA-9 promotion of interleukin-6 expression by inhibiting monocyte chemoattractant protein-induced protein 1 expression in interleukin-1beta-stimulated human chondrocytes. Arthritis Rheumatol 67:2117–2128. https://doi.org/10.1002/art.39173

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Blom AB, van Lent PL, Libregts S, Holthuysen AE, van der Kraan PM, van Rooijen N, van den Berg WB (2007) Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3. Arthritis Rheum 56:147–157. https://doi.org/10.1002/art.22337

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Poree B, Kypriotou M, Chadjichristos C, Beauchef G, Renard E, Legendre F, Melin M, Gueret S, Hartmann DJ, Mallein-Gerin F et al (2008) Interleukin-6 (IL-6) and/or soluble IL-6 receptor down-regulation of human type II collagen gene expression in articular chondrocytes requires a decrease of Sp1.Sp3 ratio and of the binding activity of both factors to the COL2A1 promoter Interleukin-6 (IL-6) and/or soluble IL-6 receptor down-regulation of human type II collagen gene expression in articular chondrocytes requires a decrease of Sp1.Sp3 ratio and of the binding activity of both factors to the COL2A1 promoter. J Biol Chem 8:4850–4865

    Article  Google Scholar 

  28. 28.

    Liu JT, Guo X, Ma WJ, Zhang YG, Xu P, Yao JF, Bai YD (2010) Mitochondrial function is altered in articular chondrocytes of an endemic osteoarthritis, Kashin-Beck disease. Osteoarthr Cartil 18:1218–1226. https://doi.org/10.1016/j.joca.2010.07.003

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Wang SJ, Guo X, Zuo H, Zhang YG, Xu P, Ping ZG, Zhang Z, Geng D (2006) Chondrocyte apoptosis and expression of Bcl-2, Bax, Fas, and iNOS in articular cartilage in patients with Kashin-Beck disease. J Rheumatol 33:615–619

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (81402638, 81472924, and 81502766) and Key International Cooperation Projects from National Natural Science Foundation of China (81620108026).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mikko J. Lammi or Xiong Guo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary Material

Fig.S1
figure2

The mRNA levels for IGFBP2, IL6, APOL3 and FBLN1 in chondrocytes of KBD patients and controls. The lines inside the boxes denote the medians. The boxes mark the interval between the 25 and 75 percentiles. The whiskers denote the interval between the 10 and 90 percentiles (PNG 1556 kb)

High resolution image (TIF 503 kb)

ESM 2

(DOCX 48 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhao, G., Shao, W. et al. The Importance of Se-Related Genes in the Chondrocyte of Kashin–Beck Disease Revealed by Whole Genomic Microarray and Network Analysis. Biol Trace Elem Res 187, 367–375 (2019). https://doi.org/10.1007/s12011-018-1404-0

Download citation

Keywords

  • Trace element
  • Selenium
  • Kashin–Beck disease
  • Chondrocyte
  • Microarray
  • STRING