Skip to main content
Log in

Mineral and Trace Metal Concentrations in Seaweeds by Microwave-Assisted Digestion Method Followed by Quadrupole Inductively Coupled Plasma Mass Spectrometry

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study reports the total concentrations of mineral and trace metals sodium, potassium, calcium, magnesium, phosphorus, iron, copper, zinc, and manganese in the seaweeds Padina tetrastromatica, Turbinaria ornate, Sargassum wightii, Sargassum swartzii, Gracilaria edulis, Ulva lactuca, Chaetomorpha antennina, and Halimeda opuntia collected from mandapam coastal regions, Southeast coast of India. Microwave-assisted digestion was used for sample preparation prior to mineral and trace metal analysis. Mineral and trace metal analyses were determined by inductively coupled plasma mass spectrometry. The ranges of concentrations of mineral and trace metals in algae were 27.04 ± 2.54–194.08 ± 2.36 mg/kg for manganese, 1.88 ± 0.10–121.5 ± 0.70 mg/kg for sodium, 6.5 ± 0.56–90.5 ± 2.12 mg/kg for magnesium, 59.07 ± 0.34–672 ± 2.82 mg/kg for potassium, 13.15 ± 2.08–135.13 ± 1.59 for sulfur, 0.003 ± 0.001–3.44 ± 0.13 mg/kg for cobalt, 0.39 ± 0.19–8.95 ± 0.38 mg/kg for copper, 0.72 ± 0.28–25.72 ± 0.39 mg/kg for zinc, and 6.01 ± 0.27–188.47 ± 1.92 mg/kg for iron.The results were evaluated statistically, and the significant difference was observed in the mean concentrations of all mineral and trace elements, except Co, Cu, and Zn, among the type of seaweeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mateljan G (2006) The world’s healthiest foods. George Mateljan FDN. Seattle, WA

  2. Collen J, Roeder V, Rousvoal S, Collin O, Kloareg (2001) Summary of worldwide seaweed production, Seventeenth Intl. Seaweed Symp. Proc Pp 456

  3. Mishra VK, Temelli F, Ooraikul B, Shacklock PF, Craigie JS (1993) Lipids of the red alga, Palmaria palmata. Bot Mar 36(2):169–174

    Article  CAS  Google Scholar 

  4. Urbano MG, Goñi I (2002) Bioavailability of nutrients in rats fed on edible seaweeds, Nori (Porphyra tenera) and Wakame (Undaria pinnatifida), as a source of dietary fibre. Food Chem 76(3):281–286

    Article  CAS  Google Scholar 

  5. Nwosu F, Morris J, Lund VA, Stewart D, Ross HA, McDougall GJ (2011) Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine alga. Food Chem 126(3):1006–1012

    Article  CAS  Google Scholar 

  6. Kumar M, Kumari P, Trivedi N (2011) Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J Appl Phycol 23(5):797–810

    Article  CAS  Google Scholar 

  7. Aslam MN, Kreider JM, Paruchuri T, Bhagavathula N, DaSilva M, Zernicke RF, Goldstein SA, Varani J (2010) A mineral-rich extract from the red marine algae Lithothamnion calcareum preserves bone structure and function in female mice on a western-style diet. Calcif Tissue Int 86(4):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arasaki S, Arasaki T (1983) Low calorie, high nutrition vegetables from the sea to help you look and feel better. Japan Publications, Tokyo 196 pp

    Google Scholar 

  9. Kumar CS, Ganesan P, Suresh PV, Bhaskar N (2008b) Seaweeds as a source of nutritionally beneficial compounds—a review. J Food Sci Technol 45(1):1–13

    CAS  Google Scholar 

  10. Ensminger AH, Ensminger ME, Konlande JE, Robson JRK (1995) The concise encyclopedia of foods and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  11. Dawes CJ (1998) Marine botany. John Wiley & Sons, Inc, New York, p 480

    Google Scholar 

  12. Rupérez P (2002) Mineral content of edible marine seaweeds. Food Chem 79(1):23–26

    Article  Google Scholar 

  13. McDermid KJ, Stuercke B (2003) Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 15(6):513–524

    Article  CAS  Google Scholar 

  14. Marsham S, Scott GW, Tobin ML (2007) Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem 100(4):1331–1336

    Article  CAS  Google Scholar 

  15. Chakraborty S, Santra SC (2008) Biochemical composition of eight benthic algae collected fromSunderban. IJMS 37:329–332

  16. Matanjun P, Mohamed S, Mustapha NM, Muhammad K (2009) Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol 21(1):75–80

    Article  CAS  Google Scholar 

  17. Matusiewicz H (2003) Wet digestion methods. In: Mester Z, Sturgeon R (eds) Sample preparation for trace element analysis. Elsevier, Amsterdam, p 2003

    Google Scholar 

  18. Chan S, Gerson B, Reitz RE, Sadjadi SA (1998) Technical and clinical aspects of spectrometric analysis of trace elements in clinical samples. Clin Lab Med 18(4):615–629

    Article  CAS  PubMed  Google Scholar 

  19. Sheehan TMT, Halls DJ (1999) Measurement of selenium in clinical specimens. Ann Clin Biochem 36(3):301–315

    Article  CAS  PubMed  Google Scholar 

  20. Sun S, Li J (2015) Determination of Zr, Nb, Mo, Sn, Hf, Ta, and Win seawater by N-benzoyl-N-phenylhydroxylamine extraction chromatographic resin and inductively coupled plasma-mass spectrometry. Microchem J 119:102–107

    Article  CAS  Google Scholar 

  21. Hieftje GM (2007) Introduction—a forward-looking perspective. Inductively coupled plasma spectrometry and its applications. 1–26

  22. Taverniers I, De Loose M, Van Bockstaele E (2004) Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. TrAC Trends Anal Chem 23(8):535–552

    Article  CAS  Google Scholar 

  23. Andrade LR, Farina M, Filho GMA (2004) Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol Environ Saf 58(1):117–125

    Article  CAS  PubMed  Google Scholar 

  24. Zbikowski R, Szefer P, Latała A (2006) Distribution and relationships between selected chemical elements in green alga Enteromorpha sp. from the southern Baltic. Environ Pollut 143(3):435–448

    Article  CAS  PubMed  Google Scholar 

  25. Rohani-Ghadikolaei K, Abdulalian E, Ng WK (2012) Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. J Food Sci Technol 49(6):774–780

    Article  CAS  PubMed  Google Scholar 

  26. Topcuoǧlu S, Güven KC, Balkıs N, Kirbașoǧlu C (2003) Heavy metal monitoring of marine algae from the Turkish Coast of the Black Sea, 1998-2000. Chemosphere 52(10):1683–1688

    Article  PubMed  Google Scholar 

  27. Carlson L, Erlandsson B (1991) Effects of salinity on the uptake of radionuclides by Fucus vesiculosus L. J Environ Radioact 13(4):309–322

    Article  CAS  Google Scholar 

  28. Manivannan K, Thirumaran G, Devi GK, Hemalatha A, Anantharaman P (2008) Biochemical composition of seaweeds from Mandapam coastal regions along Southeast Coast of India. American-Eurasian Journal of Botany 1(2):32–37

    Google Scholar 

  29. Qari R (2015) Heavy metals concentrations in brown seaweed Padina Pavonia (L.) and P. tetrastromatica at different beaches of Karachi Coast. IJMS 44(8):1200–1206

  30. Rao IM, Murty MV, Satyanarayana D (1995) Trace metal distribution in marine algae of Visakhapatnam, east coast of India. IJMS 24:142–146

  31. Reka P, Thahira Banu A, Seethalakshmi M (2017) Elemental composition of selected edible seaweeds using SEM-energy dispersive spectroscopic analysis. Int Food Res J 24(2):600–606

  32. Astorga-España MS, Galdón BR, Rodríguez ER, Romero CD (2015) Mineral and trace element concentrations in seaweeds from the sub-Antarctic ecoregion of Magallanes (Chile). J Food Compos Anal 39:69–76

    Article  Google Scholar 

  33. Cabrita AR, Maia MR, Oliveira HM, Sousa-Pinto I, Almeida AA, Pinto E, Fonseca AJ (2016) Tracing seaweeds as mineral sources for farm-animals. J Appl Phycol 28(5):3135–3150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Thodhal Yoganandham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thodhal Yoganandham, S., Raguraman, V., Muniswamy, G. et al. Mineral and Trace Metal Concentrations in Seaweeds by Microwave-Assisted Digestion Method Followed by Quadrupole Inductively Coupled Plasma Mass Spectrometry. Biol Trace Elem Res 187, 579–585 (2019). https://doi.org/10.1007/s12011-018-1397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1397-8

Keywords

Navigation