Skip to main content

Advertisement

Log in

Interaction of Zn with Losartan. Activation of Intrinsic Apoptotic Signaling Pathway in Lung Cancer Cells and Effects on Alkaline and Acid Phosphatases

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A new losartan [2-butyl-5-chloro-3-[[4-[2-(2H-tetrazol-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol zinc(II) complex [Zn(Los)Cl], was synthesized and characterized. The crystal structure was determined by x-ray diffraction methods. When aqueous solutions of the ligand and the metal were mixed, the known and more soluble powder [Zn(Los)2].3H2O (ZnLos) complex has been obtained. The interactions with phosphatases showed a concerted mechanism displayed by the Zn ions and ZnLos up to 500 μM concentration: a decrease of the acid phosphatase (AcP) associated with an increase in the alkaline phosphatase (ALP) activities. The complex and ZnSO4 showed a cytotoxic behavior on human lung A549 cancer cell line at concentrations higher than 75 μM with reactive oxygen species (ROS) generation and GSH (and GSH/GSSG ratio) depletion. Apoptotic cells were observed using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) method, a mechanism accompanied by upregulation of BAX protein, downregulation of Bcl-XL and release of caspase-3. The BAX/Bcl-XL ratio was found to be significantly higher in cells exposure to ZnLos than cells treated with ZnSO4, in agreement with the higher apoptotic percentage of cells found for the complex. Cell death was found to be produced by apoptosis and no necrosis has been observed. On the contrary, losartan exerted low effects on phosphatases, produced some reduction of cancer cell viability (concentrations > 250 μM, number of apoptotic cells similar to the basal) with low ROS depletion, without alteration of the GSH/GSSG and low BAX/Bcl-XL ratios. In the MRC-5, normal lung fibroblasts cell line only ZnSO4 at concentrations higher than 200 μM displays cytotoxic effects.

Interaction of Zn with losartan. Activation of intrinsic apoptotic signaling pathway in lung cancer cells and effects on alkaline and acid phosphatases

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917. https://doi.org/10.1002/ijc.25516

    Article  CAS  PubMed  Google Scholar 

  2. Timmermans PB, Duncia JV, Carini DJ, Chiu AT, Wong PC, Wexler RR, Smith RD (1995) Discovery of losartan, the first angiotensin II receptor antagonist. J Hum Hypertens 5:S3–S18

  3. Li J, Chen L, Yu P, Liu B, Zhu J, Yang Y (2014) Telmisartan exerts anti-tumor effects by activating peroxisome proliferator-activated receptor-γ in human lung adenocarcinoma A549 cells. Molecules 19:2862–2876. https://doi.org/10.3390/molecules19032862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gallagher PE, Tallant EA (2004) Inhibition of human lung cancer cell growth by angiotensin-(1-7). Carcinogenesis 25:2045–2052. https://doi.org/10.1093/carcin/bgh236

    Article  CAS  PubMed  Google Scholar 

  5. Islas MS, Luengo A, Franca CA, Griera Merino M, Calleros L, Rodríguez-Puyol M, Lezama L, Ferrer EG, Williams PAM (2016) Experimental and DFT characterization, antioxidant and anticancer activities of a cu(II)-irbesartan complex: structure-antihypertensive activity relationships in cu(II)-sartan complexes. J Biol Inorg Chem 21:851–863. https://doi.org/10.1007/s00775-016-1384-5

    Article  CAS  PubMed  Google Scholar 

  6. Ho E (2004) Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 10:572–578

    Article  Google Scholar 

  7. Singh KP, Zaidi SI, Raisuddin S, Saxena AK, Murthy RC, Ray PK (1992) Effect of zinc on immune functions and host resistance against infection and tumor challenge. Immunopharmacol Immunotoxicol 14:813–840

    Article  CAS  PubMed  Google Scholar 

  8. Prasad AS, Kucuk O (2002) Zinc in cancer prevention. Cancer Metastasis Rev 21:291–295. https://doi.org/10.1023/A:1021215111729

    Article  CAS  PubMed  Google Scholar 

  9. Kocdor H, Ates H, Aydin S, Cehreli R, Soyarat F, Kemanli P, Harmanci D, Cengiz H, Kocdor MA (2015) Zinc supplementation induces apoptosis and enhances antitumor efficacy of docetaxel in non-small-cell lung cancer. Dovepress 9:3899–3909. https://doi.org/10.2147/DDDT.S87662

    Article  CAS  Google Scholar 

  10. Braun LA, Rosenfeldt F (2013) Pharmaco-nutrient interactions—a systematic review of zinc and antihypertensive therapy. Int J Clin Pract 67:717–725. https://doi.org/10.1111/ijcp.12040

    Article  CAS  PubMed  Google Scholar 

  11. Martínez VR, Aguirre MV, Todaro JS, Piro OE, Echeverría GA, Ferrer EG, Williams PAM (2018) Azilsartan and its Zn(II) complex. Synthesis, anticancer mechanisms of action and binding to bovine serum albumin. Toxicol In Vitro 48:205–220. https://doi.org/10.1016/j.tiv.2018.01.009

    Article  PubMed  Google Scholar 

  12. Teixeira JA, Siqueira AB (2016) Thermal and spectroscopic characterization, antioxidant evaluation and pyrolysis of losartan with some bivalent metals. J Anal Appl Pyrol 117:17–24. https://doi.org/10.1016/j.jaap.2015.12.023

    Article  CAS  Google Scholar 

  13. Lachowicz JI, Nurchi VM, Crisponi G, Jaraquemada-Pelaez MG, Caltagirone C, Peana M, Zoroddu MA, Szewczuk Z, Cooper GJS (2017) Complex formation equilibria of Cu(2+) and Zn(2+) with irbesartan and losartan. Eur J Pharm Sci 97:158–169. https://doi.org/10.1016/j.ejps.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  14. Fishman WH (1987) Alkaline phosphatase: an overview. Clin Biochem 20:387–392. https://doi.org/10.1007/2Fs12291-013-0408-y

    Article  CAS  PubMed  Google Scholar 

  15. Bozzo GG, Raghothama KG, Plaxton WC (2004) Structural and kinetic properties of a novel purple acid phosphatase from phosphate-starved tomato (Lycopersicon esculentum) cell cultures. Biochem J 377:419–428. https://doi.org/10.1042/BJ20030947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. CrysAlisPro, Oxford Diffraction Ltd., version 1.171.33.48 (release 15–09-2009 CrysAlis171.NET)

  17. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  18. Ferrer EG, Salinas MV, Correa MJ, Naso L, Barrio DA, Etcheverry SB, Lezama L, Rojo T, Williams PAM (2006) Synthesis, characterization, antitumoral and osteogenic activities of quercetin vanadyl (IV) complexes. J Biol Inorg Chem 11:791–801. https://doi.org/10.1007/s00775-006-0122-9

    Article  CAS  PubMed  Google Scholar 

  19. Blum U, Schwedt G (1998) Inhibition behavior of acid phosphatase, phosphodiesterase I and adenosine deaminase as tools for trace metal analysis and speciation. Anal Chim Acta 360:101–108. https://doi.org/10.1016/S0003-2670(97)00717-4

    Article  CAS  Google Scholar 

  20. Glaysher S, Cree I (2011) Isolation and culture of colon cancer cells and cell lines. Meth Mol Biol 731:135–140. https://doi.org/10.1007/978-1-61779-080-5_12

    Article  CAS  Google Scholar 

  21. Qin Y, Lu M, Gong X (2008) Dihydrorhodamine 123 superior to 2,7-dichlorodihydrofluorescein diacetate and dihydrorhodamine 6G in detecting intracellular hydrogen peroxide tumor cells. Cell Biol Int 32:224–228. https://doi.org/10.1016/j.cellbi.2007.08.028

    Article  CAS  PubMed  Google Scholar 

  22. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:249–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  23. Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226. https://doi.org/10.1016/0003-2697(76)90326-2

    Article  CAS  PubMed  Google Scholar 

  24. Negoescu A, Guillermet C, Lorimier P, Brambilla E, Labat-Moleur F (1998) Importance of DNA fragmentation in apoptosis with regard to TUNEL specificity. Biomed Pharmacother 52:252–258. https://doi.org/10.1016/S0753-3322(98)80010-3

    Article  CAS  PubMed  Google Scholar 

  25. Liu QY, Stein C (1997) Taxol and estramustine-induced modulation of human prostate cancer cell apoptosis via alteration in bcl-xL and bak expression. Clin Cancer Res 3(11):2039–2046

    CAS  PubMed  Google Scholar 

  26. Aguirre MV, Juaristi JA, Alvarez MA, Brandan NC (2005) Characteristics of in vivo murine erythropoietic response to sodium orthovanadate. Chem Biol Interact 156:55–68. https://doi.org/10.1016/j.cbi.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  27. Ribble D, Goldstein NB, Norris DA, Shellman YG (2005) A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 5:1–7. https://doi.org/10.1186/1472-6750-5-12

    Article  CAS  Google Scholar 

  28. Farrugia LJ (1997) ORTEP3 for windows. J Appl Crystallogr 30:565

    Article  CAS  Google Scholar 

  29. Franca CA, Etcheverry SB, Pis Diez R, Williams PAM (2009) Irbesartan: FTIR and Raman spectra. Density functional study on vibrational and NMR spectra. J Raman Spectrosc 40:1296–1300. https://doi.org/10.1002/jrs.2282

    Article  CAS  Google Scholar 

  30. Islas MS, Franca CA, Etcheverry SB, Ferrer EG, Williams PAM (2012) Computational study and spectroscopic investigations of antihypertensive drugs. Vibrat Spectrosc 62:143–151. https://doi.org/10.1016/j.vibspec.2012.04.009

    Article  CAS  Google Scholar 

  31. Könczöl M, Goldenberg E, Ebeling S, Schäfer B, Garcia-Käufer M, Gminski R, Grobéty B, Rothen-Rutishauser B, Merfort I, Gieré R, Mersch-Sundermann V (2012) Cytotoxicity and genotoxicity of size-fractionated iron oxide (magnetite) in A549 human lung epithelial cells: role of ROS, JNK, and NF-κB. Chem Res Toxicol 25:2687–2703. https://doi.org/10.1021/tx200051s

    Article  CAS  PubMed  Google Scholar 

  32. Vink H (1994) Electrolytic conductivity of mixed electrolyte solutions. Ber Bunsenges Phys Chem 98:1039–1045

    Article  CAS  Google Scholar 

  33. de Oliveira RP, Felix FS, Angnes L (2012) A simple and precise conductometric method for the determination of losartan in pharmaceutical products. Cent Eur J Chem 10:1842–1849. https://doi.org/10.2478/s11532-012-0110-6

    Article  CAS  Google Scholar 

  34. Kellet KAB, Williams J, Vardy ERLC, Smith AD, Hooper NM (2011) Plasma alkaline phosphatase is elevated in Alzheimer's disease and inversely correlates with cognitive function. Int J Mol Epidemiol Genet 2:114–121

    Google Scholar 

  35. Thompson KH, McNeill JH, Orvig C (1999) Vanadium compounds as insulin mimics. Chem Rev 99:2561–2571. https://doi.org/10.1021/cr980427c

    Article  CAS  PubMed  Google Scholar 

  36. Dean RL (2002) Kinetic studies with alkaline phosphatase in the presence and absence of inhibitors and divalent cations. Biochem. Mol Biol Educ 30:401–407. https://doi.org/10.1002/bmb.2002.494030060138

    Article  CAS  Google Scholar 

  37. Gellatly KS, Moorhead GBC, Duff SMC, Lefebvre DD, Plaxton WC (1994) Purification and characterization of a potato tuber. Acid phosphatase having significant phosphotyrosine phosphatase activity. Plant Physiol 106:223–232. https://doi.org/10.1104/pp.106.1.223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schenk G, Miti N, Hanson GR, Comba P (2013) Purple acid phosphatase: a journey into the function and mechanism of a colorful enzyme. Coord Chem Rev 257:473–482. https://doi.org/10.1016/j.ccr.2012.03.020

    Article  CAS  Google Scholar 

  39. Rane SY, Badave KD, Ahmed K (2009) Insight into bio-physiological functions of acid phosphatase from potatoes (Solanum tuberosum): a bioanalytical approach. Indian J Chem 48A:15–24

    CAS  Google Scholar 

  40. Kuftinec MM, Miller SA, Kuftinec MM, Miller SA (1972) Alkaline and acid phosphatase activities during growth of long bones and mandibles. Calcif Tissue Res 9:173–178. https://doi.org/10.1007/BF02061955

    Article  CAS  PubMed  Google Scholar 

  41. De la Iglesia IS, López-Jorge CE, Gómez-Casares MT, Lemes Castellano A, Cabrera PM, López Brito J, Suárez Cabrera A, Molero Labarta T (2009) Induction of apoptosis in leukemic cell lines treated with captopril, trandolapril and losartan: a new role in the treatment of leukaemia for these agents. Leuk Res 33:810–816. https://doi.org/10.1016/j.leukres.2008.09.029

    Article  CAS  Google Scholar 

  42. Godugu C, Patel AR, Doddapaneni R, Marepally S, Jackson T, Singh M (2013) Inhalation delivery of Telmisartan enhances intratumoral distribution of nanoparticles in lung cancer models. J Control Release 172:86–95. https://doi.org/10.1016/j.jconrel.2013.06.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao W, Song Q, Zhang Z, Mao L, Zheng W, Hu X, Lian H (2015) The kinetic response of the proteome in A549 cells exposed to ZnSO4 stress. PLoS One 10:e0133451. https://doi.org/10.1371/journal.pone.0133451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jiang D, Sullivan PG, Sensi SL, Steward O, Weiss JH (2001) Zn(2+) induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J Biol Chem 276:47524–47529

    Article  CAS  PubMed  Google Scholar 

  45. Donadelli M, Dalla Pozza E, Scupoli MT, Costanzo C, Scarpa A, Palmieri M (2009) Intracellular zinc increase inhibits p53−/− pancreatic adenocarcinoma cell growth by ROS/AIF-mediated apoptosis. Biochim Biophys Acta 1793:273–280. https://doi.org/10.1016/j.bbamcr.2008.09.010

    Article  CAS  PubMed  Google Scholar 

  46. Yuan N, Wang YH, Ll KJ, Zhao Y, Hu X, Mao L, Zhao WJ, Lian HZ, Zheng WJ (2012) Effects of exogenous zinc on the cellular zinc distribution and cell cycle of A549 cells. Biosci Biotechnol Biochem 76:2014–2020. https://doi.org/10.1271/bbb.120216

    Article  CAS  PubMed  Google Scholar 

  47. Goodsell DS (2002) The molecular perspective: Bcl-2 and apoptosis. Stem Cells 20:355–356. https://doi.org/10.1634/stemcells.20-4-355

    Article  PubMed  Google Scholar 

  48. Ku JH, Seo SY, Kwak C, Kim HH (2012) The role of survivin and Bcl-2 in zinc-induced apoptosis in prostate cancer cells. Urol Oncol 30:562–568. https://doi.org/10.1016/j.urolonc.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  49. Etcheverry SB, Ferrer EG, Naso L, Barrio DA, Lezama L, Rojo T, Williams PAM (2007) Losartan and its interaction with copper(II): biological effects. Bioorg Med Chem 15:6418–6424

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by UNLP, CONICET (PIP 0611), CICPBA (PICyT 813/13), and ANPCyT (PICT-2016-1814, PME06 2804 and PICT06 2315), Argentina. VRM is a fellowship holder from ANPCyT. EGF, LGN, GAE, and OEP are research fellows of CONICET. PAMW is a research fellow of CICPBA, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia A. M. Williams.

Electronic supplementary material

ESM 1

(DOCX 622 kb)

Supplementary Information Available. Tables of fractional coordinates and equivalent isotropic displacement parameters of the non-H atoms (Table S3), full bond distances and angles (Table S4), atomic anisotropic displacement parameters (Table S5), hydrogen atoms positions (Table S6), and H bond distances and angles (Table S7). Crystallographic structural data have been deposited at the Cambridge Crystallographic Data Centre (CCDC). Any request to the Cambridge Crystallographic Data Centre for this material should quote the full literature citation and the reference number CCDC 1458978. Fig. S1 (Time variation of the electronic absorption spectra of the zinc complex in 96 % EtOH (5 × 10−5 mol/L), room temperature). Fig. S2 (Morphologic changes of A549 cells double stained with AO/EtBr).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, V.R., Aguirre, M.V., Todaro, J.S. et al. Interaction of Zn with Losartan. Activation of Intrinsic Apoptotic Signaling Pathway in Lung Cancer Cells and Effects on Alkaline and Acid Phosphatases. Biol Trace Elem Res 186, 413–429 (2018). https://doi.org/10.1007/s12011-018-1334-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1334-x

Keywords

Navigation