Is Iron Accumulation a Possible Risk Factor for Sarcopenia?

  • Guoyang Zhao


Sarcopenia has a high incidence among the elderly, with significant negative effects on the quality of life. The pathogenesis of sarcopenia is complex, and many factors are involved in its development and progression. Sarcopenia might be associated with iron accumulation given that (1) age-related iron accumulation was found in the skeletal muscle, (2) excess iron could cause skeletal muscle damage or atrophy, and (3) patients with sarcopenia showed higher levels of serum ferritin. Understanding the etiology and pathogenesis of sarcopenia would help to develop new treatment and preventive methods, thereby improving the quality of life of the elderly patients.


Sarcopenia Iron accumulation Skeletal muscle Ferritin 



divalent metal transporter 1




transferrin receptor 1


iron regulatory protein 2


ferroportin 1


reactive oxygen species


Funding Information

This work was partially supported by the Jiangsu provincial key research and development program (No. BE2016720), and Jiangsu provincial maternal and child health program (No. F201506).

Compliance with Ethical Standards

Conflict of Interest

The author declares that there is no conflict of interest.


  1. 1.
    Siddique A, Kowdley KV (2012) Review article: the iron overload syndromes. Aliment Pharmacol Ther 35:876–893. CrossRefPubMedGoogle Scholar
  2. 2.
    Xu J, Jia Z, Knutson MD, Leeuwenburgh C (2012) Impaired iron status in aging research. Int J Mol Sci 13:2368–2386. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sheftel AD, Mason AB, Ponka P (2012) The long history of iron in the universe and in health and disease. Biochim Biophys Acta 1820:161–187. CrossRefPubMedGoogle Scholar
  4. 4.
    Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Núñez MT (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21:92–105. CrossRefPubMedGoogle Scholar
  5. 5.
    Li GF, Pan YZ, Sirois P, Li K, Xu YJ (2012) Iron homeostasis in osteoporosis and its clinical implications. Osteoporos Int 23:2403–2408. CrossRefPubMedGoogle Scholar
  6. 6.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older People (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing 39:412–423. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, Cederholm T, Chandler J, de Meynard C, Donini L, Harris T, Kannt A, Keime Guibert F, onder G, Papanicolaou D, Rolland Y, Rooks D, Sieber C, Souhami E, Verlaan S, Zamboni M (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12:249–256. CrossRefPubMedGoogle Scholar
  8. 8.
    Marzetti E, Calvani R, Tosato M, Cesari M, Di Bari M, Cherubini A, Collamati A, D'Angelo E, Pahor M, Bernabei R, Landi F (2017) Sarcopenia: an overview. Aging Clin Exp Res 29:11–17. CrossRefPubMedGoogle Scholar
  9. 9.
    Altun M, Edstrom E, Spooner E, Flores-Moralez A, Bergman E, Tollet-Egnell P, Norstedt G, Kessler BM, Ulfhake B (2017) Iron load and redox stress in skeletal muscle of aged rats. Muscle Nerve 36:223–233. CrossRefGoogle Scholar
  10. 10.
    Jung SH, DeRuisseau LR, Kavazis AN, DeRuisseau KC (2008) Plantaris muscle of aged rats demonstrates iron accumulation and altered expression of iron regulation proteins. Exp Physiol 93:407–414. CrossRefPubMedGoogle Scholar
  11. 11.
    Xu J, Knutson MD, Carter CS, Leeuwenburgh C (2008) Iron accumulation with age, oxidative stress and functional decline. PLoS One 3:e2865. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hofer T, Marzetti E, Xu J, Seo AY, Gulec S, Knutson MD, Leeuwenburgh C, Dupont-Versteegden EE (2008) Increased iron content and RNA oxidative damage in skeletal muscle with aging and disuse atrophy. Exp Gerontol 43:563–570. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Xu J, Hwang JC, Lees HA, Wohlgemuth SE, Knutson MD, Judge AR, Dupont-Versteegden EE, Marzetti E, Leeuwenburgh C (2012) Long-term perturbation of muscle iron homeostasis following hindlimb suspension in old rats is associated with high levels of oxidative stress and impaired recovery from atrophy. Exp Gerontol 47:100–108. CrossRefPubMedGoogle Scholar
  14. 14.
    DeRuisseau KC, Park YM, DeRuisseau LR, Cowley PM, Fazen CH, Doyle RP (2013) Aging-related changes in the iron status of skeletal muscle. Exp. Gerontol 48:1294–1302. CrossRefPubMedGoogle Scholar
  15. 15.
    Aydemir TB, Troche C, Kim J, Kim MH, Teran OY, Leeuwenburgh C, Cousins RJ (2016) Aging amplifies multiple phenotypic defects in mice with zinc transporter Zip14 (Slc39a14) deletion. Exp Gerontol 85:88–94. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Reardon TF, Allen DG (2009) Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance. Exp Physiol 94:720–730. CrossRefPubMedGoogle Scholar
  17. 17.
    Kasztura M, Dzięgała M, Kobak K, Bania J, Mazur G, Banasiak W, Ponikowski P, Jankowska EA (2017) Both iron excess and iron depletion impair viability of rat H9C2 cardiomyocytes and L6G8C5 myocytes. Kardiol Pol 75:267–275. CrossRefPubMedGoogle Scholar
  18. 18.
    Arruda LF, Arruda SF, Campos NA, de Valencia FF, Siqueira EM (2013) Dietary iron concentration may influence aging process by altering oxidative stress in tissues of adult rats. PLoS One 8:e61058. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Seo AY, Xu J, Servais S, Hofer T, Marzetti E, Wohlgemuth SE, Knutson MD, Chung HY, Leeuwenburgh C (2008) Mitochondrial iron accumulation with age and functional consequences. Aging Cell 7:706–716CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Veatch JR, McMurray MA, Nelson ZW, Gottschling DE (2009) Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137:1247–1258. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liang LP, Jarrett SG, Patel M (2008) Chelation of mitochondrial iron prevents seizure-induced mitochondrial dysfunction and neuronal injury. J. Neurosci 28: 11550–11556. doi: 10.1523/JNEUROSCI.3016-08.2008Google Scholar
  22. 22.
    Duvigneau JC, Piskernik C, Haindl S, Kloesch B, Hartl RT, Hüttemann M, Lee I, Ebel T, Moldzio R, Gemeiner M, Redl H, Kozlov AV (2008) A novel endotoxin-induced pathway: upregulation of heme oxygenase 1, accumulation of free iron, and free iron-mediated mitochondrial dysfunction. Lab Investig 88:70–77. CrossRefPubMedGoogle Scholar
  23. 23.
    Marzetti E, Calvani R, Cesari M, Buford TW, Lorenzi M, Behnke BJ, Leeuwenburgh C (2013) Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. Int J Biochem Cell Biol 45:2288–2301. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Solomon A, Bouloux P (2006) Endocrine therapies for sarcopenia in older men. Br J Hosp Med 67:477–481. CrossRefGoogle Scholar
  25. 25.
    Sayed RK, de Leonardis EC, Guerrero-Martinez JA et al (2016) Identification of morphological markers of sarcopenia at early stage of aging in skeletal muscle of mice. Exp Gerontol 83:22–30. CrossRefPubMedGoogle Scholar
  26. 26.
    Kramer IF, Snijders T, Smeets JSJ, Leenders M, van Kranenburg J, den Hoed M, Verdijk LB, Poeze M, van Loon LJC (2017) Extensive type II muscle Fiber atrophy in elderly female hip fracture patients. J Gerontol A Biol Sci Med Sci 72:1369–1375. CrossRefPubMedGoogle Scholar
  27. 27.
    Ikeda Y, Imao M, Satoh A, Watanabe H, Hamano H, Horinouchi Y, Tamaki T (2016) Iron-induced skeletal muscle atrophy involves an Akt-forkhead box O3-E3 ubiquitin ligase-dependent pathway. J Trace Elem Med Biol 35:66–76. CrossRefPubMedGoogle Scholar
  28. 28.
    Kim HK, Hwang HJ, Kim SH (2014) Relationship between serum ferritin levels and sarcopenia in Korean females aged 60 years and older using the fourth Korea National Health and Nutrition Examination Survey (KNHANES IV-2, 3), 2008–2009. PLoS One 9:e90105. eCollection 2014
  29. 29.
    Nakagawa C, Inaba M, Ishimura E, Yamakawa T, Shoji S, Okuno S (2016) Association of increased serum ferritin with impaired muscle strength/quality in hemodialysis patients. J Ren Nutr 26:253–257. CrossRefPubMedGoogle Scholar
  30. 30.
    Perna S, Peroni G, Faliva MA, Bartolo A, Naso M, Miccono A, Rondanelli M (2017) Sarcopenia and sarcopenic obesity in comparison: prevalence, metabolic profile, and key differences. A cross-sectional study in Italian hospitalized elderly. Aging Clin Exp Res 29:1249–1258. CrossRefPubMedGoogle Scholar
  31. 31.
    Scott D, Blizzard L, Fell J, Giles G, Jones G (2010) Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: the Tasmanian Older Adult Cohort Study. J Am Geriatr Soc 58:2129–2134. CrossRefPubMedGoogle Scholar
  32. 32.
    Rodney GG, Pal R, Abo-Zahrah R (2016) Redox regulation of autophagy in skeletal muscle. Free Radic Biol Med 98:103–112. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OrthopaedicsThe Affiliated Hospital of Jiangsu UniversityZhenjiangChina

Personalised recommendations