Skip to main content

Advertisement

Log in

NaF Reduces KLK4 Gene Expression by Decreasing Foxo1 in LS8 Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Decreased expression and increased phosphorylation of Forkhead box o1 (Foxo1) in ameloblasts were observed both in vivo and in vitro when treated by fluoride. The present study aims to investigate the possible relationship between Foxo1 and enamel matrix proteinases, matrix metalloproteinase 20 (MMP20), and kallikrein 4 (KLK4), in NaF-treated ameloblasts. Ameloblast-like cells (LS8 cells) were exposed to NaF at selected concentration (0/2 mM) for 24 h. Gene overexpression and silencing experiments were used to up- and down-regulate Foxo1 expression. The expression levels of Foxo1, MMP20, and KLK4 were detected by quantitative real-time PCR and western blot. Dual luciferase reporter assay was performed to evaluate the regulation of Foxo1 on the transcriptional activity of KLK4 promoter. The results showed that KLK4 expression was decreased in LS8 cells treated by NaF, while MMP20 expression was not changed. Foxo1 activation led to significantly up-regulation of KLK4 in LS8 cells under NaF condition. Knockout of Foxo1 markedly decreased klk4 expression in mRNA level, and intensified inhibition occurred in LS8 cells when combined with NaF treatment. However, the variation trend of MMP20 was not clear. Dual luciferase reporter assay showed that Foxo1 activation enhanced the transcriptional activity of KLK4 promoter. These findings suggest that the decrease of Foxo1 expression induced by high fluoride was a cause for low KLK4 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Health USDo, Human Services Federal Panel on Community Water F (2015) U.S. Public Health Service recommendation for fluoride concentration in drinking water for the prevention of dental caries. Public Health Rep 130(4):318–331. https://doi.org/10.1177/003335491513000408

    Article  Google Scholar 

  2. Clark MB, Slayton RL, Section on oral H (2014) Fluoride use in caries prevention in the primary care setting. Pediatrics 134(3):626–633. https://doi.org/10.1542/peds.2014-1699

    Article  PubMed  Google Scholar 

  3. Nair R, Chuang JC, Lee PS, Leo SJ, Yang NQ, Yee R, Tong HJ (2016) Adult perceptions of dental fluorosis and select dental conditions—an Asian perspective. Community Dent Oral Epidemiol 44(2):135–144. https://doi.org/10.1111/cdoe.12197

    Article  PubMed  Google Scholar 

  4. Barbier O, Arreola-Mendoza L, Del Razo LM (2010) Molecular mechanisms of fluoride toxicity. Chem Biol Interact 188(2):319–333. https://doi.org/10.1016/j.cbi.2010.07.011

    Article  CAS  PubMed  Google Scholar 

  5. Agalakova NI, Gusev GP (2012) Molecular mechanisms of cytotoxicity and apoptosis induced by inorganic fluoride. ISRN Cell Biol 2012:1–16. https://doi.org/10.5402/2012/403835

    Article  CAS  Google Scholar 

  6. Wahluyo S, Ismiyatin K, Purwanto B, Mukono IS (2017) The influence of sodium fluoride on the growth of ameloblasts and kidney proximal tubular cells. Folia Biol (Praha) 63(1):31–34

    CAS  Google Scholar 

  7. Denbesten P, Li W (2011) Chronic fluoride toxicity: dental fluorosis. Monogr Oral Sci 22:81–96. https://doi.org/10.1159/000327028

    Article  PubMed  PubMed Central  Google Scholar 

  8. Suzuki M, Shin M, Simmer JP, Bartlett JD (2014) Fluoride affects enamel protein content via TGF-beta1-mediated KLK4 inhibition. J Dent Res 93(10):1022–1027. https://doi.org/10.1177/0022034514545629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. DenBesten PK, Zhu L, Li W, Tanimoto K, Liu H, Witkowska HE (2011) Fluoride incorporation into apatite crystals delays amelogenin hydrolysis. Eur J Oral Sci 119(Suppl 1):3–7. https://doi.org/10.1111/j.1600-0722.2011.00903.x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wei W, Gao Y, Wang C, Zhao L, Sun D (2013) Excessive fluoride induces endoplasmic reticulum stress and interferes enamel proteinases secretion. Environ Toxicol 28(6):332–341. https://doi.org/10.1002/tox.20724

    Article  CAS  PubMed  Google Scholar 

  11. Le MH, Nakano Y, Abduweli Uyghurturk D, Zhu L, Den Besten PK (2017) Fluoride alters Klk4 expression in maturation ameloblasts through androgen and progesterone receptor signaling. Front Physiol 8:925. https://doi.org/10.3389/fphys.2017.00925

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sharma R, Tsuchiya M, Skobe Z, Tannous BA, Bartlett JD (2010) The acid test of fluoride: how pH modulates toxicity. PLoS One 5(5):e10895. https://doi.org/10.1371/journal.pone.0010895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. DenBesten PK, Yan Y, Featherstone JD, Hilton JF, Smith CE, Li W (2002) Effects of fluoride on rat dental enamel matrix proteinases. Arch Oral Biol 47(11):763–770

    Article  CAS  Google Scholar 

  14. Zhang Y, Yan Q, Li W, DenBesten PK (2006) Fluoride down-regulates the expression of matrix metalloproteinase-20 in human fetal tooth ameloblast-lineage cells in vitro. Eur J Oral Sci 114(Suppl 1):105–110; discussion 127–109, 380. https://doi.org/10.1111/j.1600-0722.2006.00303.x

    Article  CAS  PubMed  Google Scholar 

  15. Sharma R, Tye CE, Arun A, MacDonald D, Chatterjee A, Abrazinski T, Everett ET, Whitford GM, Bartlett JD (2011) Assessment of dental fluorosis in Mmp20 +/- mice. J Dent Res 90(6):788–792. https://doi.org/10.1177/0022034511398868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Inoue T, Shinnakasu R, Ise W, Kawai C, Egawa T, Kurosaki T (2017) The transcription factor Foxo1 controls germinal center B cell proliferation in response to T cell help. J Exp Med 214(4):1181–1198. https://doi.org/10.1084/jem.20161263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Ma Z, Jiang S, Hu W, Li T, Di S, Wang D, Yang Y (2017) A global perspective on FOXO1 in lipid metabolism and lipid-related diseases. Prog Lipid Res 66:42–49. https://doi.org/10.1016/j.plipres.2017.04.002

    Article  CAS  PubMed  Google Scholar 

  18. Han J, Jin R, Zhang M, Guo Q, Zhou F (2017) Ikaros 6 protects acute lymphoblastic leukemia cells against daunorubicin-induced apoptosis by activating the Akt-FoxO1 pathway. J Leukoc Biol 101(3):675–681. https://doi.org/10.1189/jlb.2A0116-040RR

    Article  CAS  PubMed  Google Scholar 

  19. Ochodnicka-Mackovicova K, Bahjat M, Maas C, van der Veen A, Bloedjes TA, de Bruin AM, van Andel H, Schrader CE, Hendriks RW, Verhoeyen E, Bende RJ, van Noesel CJ, Guikema JE (2016) The DNA damage response regulates RAG1/2 expression in pre-B cells through ATM-FOXO1 signaling. J Immunol 197(7):2918–2929. https://doi.org/10.4049/jimmunol.1501989

    Article  CAS  PubMed  Google Scholar 

  20. Poche RA, Sharma R, Garcia MD, Wada AM, Nolte MJ, Udan RS, Paik JH, DePinho RA, Bartlett JD, Dickinson ME (2012) Transcription factor FoxO1 is essential for enamel biomineralization. PLoS One 7(1):e30357. https://doi.org/10.1371/journal.pone.0030357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao J, Ruan J, Gao L (2014) Excessive fluoride reduces Foxo1 expression in dental epithelial cells of the rat incisor. Eur J Oral Sci 122(5):317–323. https://doi.org/10.1111/eos.12148

    Article  CAS  PubMed  Google Scholar 

  22. Li J, Zhao L, Zhao X, Wang P, Liu Y, Ruan J (2017) Foxo1 attenuates NaF-induced apoptosis of LS8 cells through the JNK and mitochondrial pathways. Biol Trace Elem Res 181:104–111. https://doi.org/10.1007/s12011-017-1015-1

    Article  CAS  PubMed  Google Scholar 

  23. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  Google Scholar 

  24. Marin LM, Cury JA, Tenuta LM, Castellanos JE, Martignon S (2016) Higher fluorosis severity makes enamel less resistant to demineralization. Caries Res 50(4):407–413. https://doi.org/10.1159/000447270

    Article  CAS  PubMed  Google Scholar 

  25. Martinez-Mier EA, Shone DB, Buckley CM, Ando M, Lippert F, Soto-Rojas AE (2016) Relationship between enamel fluorosis severity and fluoride content. J Dent 46:42–46. https://doi.org/10.1016/j.jdent.2016.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lyaruu DM, Medina JF, Sarvide S, Bervoets TJ, Everts V, Denbesten P, Smith CE, Bronckers AL (2014) Barrier formation: potential molecular mechanism of enamel fluorosis. J Dent Res 93(1):96–102. https://doi.org/10.1177/0022034513510944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Kim JY, Horst O, Nakano Y, Zhu L, Radlanski RJ, Ho S, Den Besten PK (2014) Fluorosed mouse ameloblasts have increased SATB1 retention and Galphaq activity. PLoS One 9(8):e103994. https://doi.org/10.1371/journal.pone.0103994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Priyadharsini N, Malathi N, Tamizhchelvan H, Dineshkumar T (2015) Dental fluorosis: a histological study using light and confocal microscopy. Indian J Dent Res 26(3):248–251. https://doi.org/10.4103/0970-9290.162896

    Article  PubMed  Google Scholar 

  29. Bronckers AL, Lyaruu DM, DenBesten PK (2009) The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. J Dent Res 88(10):877–893. https://doi.org/10.1177/0022034509343280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Everett ET (2011) Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J Dent Res 90(5):552–560. https://doi.org/10.1177/0022034510384626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tanimoto K, Le T, Zhu L, Chen J, Featherstone JD, Li W, DenBesten P (2008) Effects of fluoride on the interactions between amelogenin and apatite crystals. J Dent Res 87(1):39–44

    Article  CAS  Google Scholar 

  32. Duan X, Mao Y, Wen X, Yang T, Xue Y (2011) Excess fluoride interferes with chloride-channel-dependent endocytosis in ameloblasts. J Dent Res 90(2):175–180. https://doi.org/10.1177/0022034510385687

    Article  CAS  PubMed  Google Scholar 

  33. Sierant ML, Bartlett JD (2012) Stress response pathways in ameloblasts: implications for amelogenesis and dental fluorosis. Cell 1(3):631–645. https://doi.org/10.3390/cells1030631

    Article  Google Scholar 

  34. Bartlett JD (2013) Dental enamel development: proteinases and their enamel matrix substrates. ISRN Dent 2013:684607. https://doi.org/10.1155/2013/684607

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bartlett JD, Simmer JP (2014) Kallikrein-related peptidase-4 (KLK4): role in enamel formation and revelations from ablated mice. Front Physiol 5:240. https://doi.org/10.3389/fphys.2014.00240

    Article  PubMed  PubMed Central  Google Scholar 

  36. Seymen F, Park JC, Lee KE, Lee HK, Lee DS, Koruyucu M, Gencay K, Bayram M, Tuna EB, Lee ZH, Kim YJ, Kim JW (2015) Novel MMP20 and KLK4 mutations in amelogenesis imperfecta. J Dent Res 94(8):1063–1069. https://doi.org/10.1177/0022034515590569

    Article  CAS  PubMed  Google Scholar 

  37. Lee J, Yang G, Kim YJ, Tran QH, Choe W, Kang I, Kim SS, Ha J (2017) Hydrogen-rich medium protects mouse embryonic fibroblasts from oxidative stress by activating LKB1-AMPK-FoxO1 signal pathway. Biochem Biophys Res Commun 491(3):733–739. https://doi.org/10.1016/j.bbrc.2017.07.119

    Article  CAS  PubMed  Google Scholar 

  38. Zhang L, Tschumi BO, Lopez-Mejia IC, Oberle SG, Meyer M, Samson G, Ruegg MA, Hall MN, Fajas L, Zehn D, Mach JP, Donda A, Romero P (2016) Mammalian target of rapamycin complex 2 controls CD8 T cell memory differentiation in a Foxo1-dependent manner. Cell Rep 14(5):1206–1217. https://doi.org/10.1016/j.celrep.2015.12.095

    Article  CAS  PubMed  Google Scholar 

  39. Sin TK, Yung BY, Siu PM (2015) Modulation of SIRT1-Foxo1 signaling axis by resveratrol: implications in skeletal muscle aging and insulin resistance. Cell Physiol Biochem 35(2):541–552. https://doi.org/10.1159/000369718

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Malcolm L. Snead (Department of Biomedical Sciences, University of Southern California) for donation of LS8 cells.

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 81470034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Ruan.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, P., Gao, J. et al. NaF Reduces KLK4 Gene Expression by Decreasing Foxo1 in LS8 Cells. Biol Trace Elem Res 186, 498–504 (2018). https://doi.org/10.1007/s12011-018-1325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1325-y

Keywords

Navigation