Skip to main content

Advertisement

Log in

Speciation Analysis of Trace Mercury in Sea Cucumber Species of Apostichopus japonicus Using High-Performance Liquid Chromatography Conjunction With Inductively Coupled Plasma Mass Spectrometry

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this paper, a simple and cost-effective method using high-performance liquid chromatography in conjunction with inductively coupled plasma mass spectrometry with a rapid ultrasound-assisted extraction was used for analysis speciation of trace mercury in sea cucumber species of Apostichopus japonicus. The effective separation of inorganic mercury, methylmercury, and ethylmercury was achieved within 10 min using Agilent ZORBAX SB-C18 analytical and guard columns with an isocratic mobile phase consisting of 8% methanol and 92% H2O containing 0.12% L-cysteine (m/v) and 0.01 mol/L ammonium acetate. Mercury species were extracted from A. japonicus samples using a solution containing 2-mercaptoethanol, L-cysteine, and hydrochloric acid and sonicating for 0.5 h. The limits of detection of inorganic mercury, methylmercury, and ethylmercury were 0.12, 0.08, and 0.20 μg/L, and the minimum detectable concentrations (measured at 0.500 g sample volume in 10.00 mL) were 2.4, 1.6, and 4.0 μg/kg, respectively. Analysis of a scallop certified reference material (GBW 10024) revealed accordance between the experimental and certified values. This study provides a reference for the evaluation of mercury speciation in sea cucumber and other seafood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liu X, Sun ZL, Zhang MS, Meng XM, Xia XK, Yuan WP, Xue F, Liu CH (2012) Antioxidant and antihyperlipidemic activities of polysaccharides from sea cucumber Apostichopus japonicus. Carbohydr Polym 90(4):1664–1670. https://doi.org/10.1016/j.carbpol.2012.07.047

    Article  CAS  PubMed  Google Scholar 

  2. Tian F, Zhang XW, Tong YY, Yi YH, Zhang SL, Li L, Sun P, Lin LP, Ding J (2005) PE, a new sulfated saponin from sea cucumber, exhibits anti-angiogenic and anti-tumor activities in vitro and in vivo. Cancer Biol Ther 4(8):874–882. https://doi.org/10.4161/cbt.4.8.1917

    Article  CAS  PubMed  Google Scholar 

  3. Xu J, Wang YM, Feng TY, Zhang B, Sugawara T, Xue CH (2011) Isolation and anti-fatty liver activity of a novel cerebroside from the sea cucumber Acaudina molpadioides. Biosci Biotechnol Biochem 75(8):1466–1471. https://doi.org/10.1271/bbb.110126

    Article  CAS  PubMed  Google Scholar 

  4. Yamada K, Matsubara R, Kaneko M, Miyamoto T, Higuchi R (2001) Constituents of Holothuroidea. 10 Isolation and structure of a biologically active ganglioside molecular species from the sea cucumber Holothuria leucospilota. Chem Pharm Bull (Tokyo) 49(4):447–452

    Article  CAS  Google Scholar 

  5. Wang Y, Chen G, Li KQ, Sun JX, Song J, Zhan YY, Zhang XX, Yang LM, Chang YQ (2017) A novel MKK gene (AjMKK3/6) in the sea cucumber Apostichopus japonicus: identification, characterization and its response to pathogenic challenge. Fish Shellfish Immun 61:24–33. https://doi.org/10.1016/j.fsi.2016.12.017

    Article  CAS  Google Scholar 

  6. Kim NY, Choi WY, Heo SJ, Kang DH, Lee HY (2017) Anti-skin cancer activities of Apostichopus japonicus extracts from low-temperature ultrasonification process. J Healthc Eng 2017:1–6. https://doi.org/10.1155/2017/6504890

    Article  CAS  Google Scholar 

  7. Jiang JW, Zhou ZC, Dong Y, Cong C, Guan XY, Wang B, Chen Z, Jiang B, Yang A, Gao S, Sun HJ (2014) In vitro antibacterial analysis of phenoloxidase reaction products from the sea cucumber Apostichopus japonicus. Fish Shellfish Immun 39(2):458–463. https://doi.org/10.1016/j.fsi.2014.06.002

    Article  CAS  Google Scholar 

  8. Yang J, Wang YH, Jiang TF, Lv L, Zhang BY, Lv ZH (2015) Depolymerized glycosaminoglycan and its anticoagulant activities from sea cucumber Apostichopus japonicus. Int J Biol Macromol 72:699–705. https://doi.org/10.1016/j.ijbiomac.2014.09.025

    Article  CAS  PubMed  Google Scholar 

  9. Jinadasa BKKK, Samanthi RI, Wicramsinghe I (2014) Trace metal accumulation in tissue of sea cucumber species; north-western sea of Sri Lanka. Am J Public Health 2(5A):1–5. https://doi.org/10.12691/ajphr-2-5A-1

    Article  Google Scholar 

  10. Liu XF, Xue CH, Wang YM, Li ZJ, Xue Y, Xu J (2012) The classification of sea cucumber (Apostichopus japonicus) according to region of origin using multi-element analysis and pattern recognition techniques. Food Control 23(2):522–527. https://doi.org/10.1016/j.foodcont.2011.08.025

    Article  CAS  Google Scholar 

  11. Henry F, Mahfouz C, Delegrange A, Courcot L (2017) Total mercury in marine species from the French coast of the eastern English Channel. Chem Ecol 33(4):271–280. https://doi.org/10.1080/02757540.2017.1305362

    Article  CAS  Google Scholar 

  12. Khoshnamvand M, Kaboodvandpour S, Ghiasi F (2013) A comparative study of accumulated total mercury among white muscle, red muscle and liver tissues of common carp and silver carp from the Sanandaj Gheshlagh reservoir in Iran. Chemosphere 90(3):1236–1241. https://doi.org/10.1016/j.chemosphere.2012.09.061

    Article  CAS  PubMed  Google Scholar 

  13. Lohren H, Blagojevic L, Fitkau R, Ebert F, Schildknecht S, Leist M, Schwerdtle T (2015) Toxicity of organic and inorganic mercury species in differentiated human neurons and human astrocytes. J Trace Elem Med Biol 32:200–208. https://doi.org/10.1016/j.jtemb.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Liu XL, Nan K, Chen BB, He M, Hu B (2017) Sample pre-treatment techniques for use with ICP-MS hyphenated techniques for elemental speciation in biological samples. J Anal Atom Spectrom 32(1):58–77. https://doi.org/10.1039/C6JA00077K

    Article  CAS  Google Scholar 

  15. Timerbaev AR (2012) Element speciation analysis using capillary electrophoresis: twenty years of development and applications. Chem Rev 113(1):778–812. https://doi.org/10.1021/cr300199v

    Article  CAS  PubMed  Google Scholar 

  16. Arroyo-Abad U, Pfeifer M, Mothes S, Stärk H-J, Piechotta C, Mattusch J, Reemtsma T (2016) Determination of moderately polar arsenolipids and mercury speciation in freshwater fish of the river Elbe (Saxony, Germany). Environ Pollut 208:458–466. https://doi.org/10.1016/j.envpol.2015.10.015

    Article  CAS  PubMed  Google Scholar 

  17. Hight SC, Cheng J (2006) Determination of methylmercury and estimation of total mercury in seafood using high performance liquid chromatography (HPLC) and inductively coupled plasma-mass spectrometry (ICP-MS): method development and validation. Anal Chim Acta 567(2):160–172. https://doi.org/10.1016/j.aca.2006.03.048

    Article  CAS  Google Scholar 

  18. Zhu SQ, Chen BB, He M, Huang T, Hu B (2017) Speciation of mercury in water and fish samples by HPLC-ICP-MS after magnetic solid phase extraction. Talanta 171:213–219. https://doi.org/10.1016/j.talanta.2017.04.068

    Article  CAS  PubMed  Google Scholar 

  19. Laffont L, Maurice L, Amouroux D, Navarro P, Monperrus M, Sonke JE, Behra P (2013) Mercury speciation analysis in human hair by species-specific isotope-dilution using GC–ICP–MS. Anal Bioanal Chem 405(9):3001–3010. https://doi.org/10.1007/s00216-012-6116-2

    Article  CAS  PubMed  Google Scholar 

  20. Serafimovski I, Karadjova I, Stafilov T, Cvetković J (2008) Determination of inorganic and methylmercury in fish by cold vapor atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry. Microchem J 89(1):42–47. https://doi.org/10.1016/j.microc.2007.11.003

    Article  CAS  Google Scholar 

  21. Torres DP, Frescura VLA, Curtius AJ (2009) Simple mercury fractionation in biological samples by CV AAS following microwave-assisted acid digestion or TMAH pre-treatment. Microchem J 93(2):206–210. https://doi.org/10.1016/j.microc.2009.07.003

    Article  CAS  Google Scholar 

  22. Zu WC, Wang ZH (2016) Ultra-trace determination of methylmercuy in seafood by atomic fluorescence spectrometry coupled with electrochemical cold vapor generation. J Hazard Mater 304:467–473. https://doi.org/10.1016/j.jhazmat.2015.11.018

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Z, Li JH, Song XL, Ma JP, Chen LX (2014) Hg2+ ion-imprinted polymers sorbents based on dithizone–Hg2+ chelation for mercury speciation analysis in environmental and biological samples. RSC Adv 4(87):46444–46453. https://doi.org/10.1039/C4RA08163C

    Article  CAS  Google Scholar 

  24. Döker S, Boşgelmez İİ (2015) Rapid extraction and reverse phase-liquid chromatographic separation of mercury (II) and methylmercury in fish samples with inductively coupled plasma mass spectrometric detection applying oxygen addition into plasma. Food Chem 184:147–153. https://doi.org/10.1016/j.foodchem.2015.03.067

    Article  CAS  PubMed  Google Scholar 

  25. Bermejo-Barrera P, Verdura-Constenla EM, Moreda-Piñeiro A, Bermejo-Barrera A (1999) Rapid acid leaching and slurry sampling procedures for the determination of methyl-mercury and total mercury in human hair by electrothermal atomic absorption spectrometry. Anal Chim Acta 398(2):263–272. https://doi.org/10.1016/S0003-2670(99)00453-5

    Article  CAS  Google Scholar 

  26. Ortiz AIC, Albarrán YM, Rica CC (2002) Evaluation of different sample pre-treatment and extraction procedures for mercury speciation in fish samples. J Anal Atom Spectrom 17(12):1595–1601. https://doi.org/10.1039/B207334J

    Article  Google Scholar 

  27. Tuzen M, Karaman I, Citak D, Soylak M (2009) Mercury (II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination. Food Chem Toxicol 47(7):1648–1652. https://doi.org/10.1016/j.fct.2009.04.024

    Article  CAS  PubMed  Google Scholar 

  28. Mishra S, Tripathi RM, Bhalke S, Shukla VK, Puranik VD (2005) Determination of methylmercury and mercury (II) in a marine ecosystem using solid-phase microextraction gas chromatography-mass spectrometry. Anal Chim Acta 551(1):192–198. https://doi.org/10.1016/j.aca.2005.07.026

    Article  CAS  Google Scholar 

  29. Leao DJ, Junior MMS, Junior JBS, de Oliveira DA, Queiroz AF, Ferreira SL (2016) Ultrasound assisted extraction for the determination of mercury in sediment samples employing cold vapour atomic absorption spectrometry. Anal Methods-UK 8(35):6554–6559. https://doi.org/10.1039/C6AY01810F

    Article  CAS  Google Scholar 

  30. Batista BL, Rodrigues JL, de Souza SS, Souza VCO, Barbosa F (2011) Mercury speciation in seafood samples by LC-ICP-MS with a rapid ultrasound-assisted extraction procedure: application to the determination of mercury in Brazilian seafood samples. Food Chem 126(4):2000–2004. https://doi.org/10.1016/j.foodchem.2010.12.068

    Article  CAS  PubMed  Google Scholar 

  31. Schmidt L, Bizzi CA, Duarte FA, Dressler VL, Flores EMM (2013) Evaluation of drying conditions of fish tissues for inorganic mercury and methylmercury speciation analysis. Microchem J 108:53–59. https://doi.org/10.1016/j.microc.2012.12.010

    Article  CAS  Google Scholar 

  32. de Souza SS, Campiglia AD, Barbosa F (2013) A simple method for methylmercury, inorganic mercury and ethylmercury determination in plasma samples by high performance liquid chromatography–cold-vapor-inductively coupled plasma mass spectrometry. Anal Chim Acta 761:11–17. https://doi.org/10.1016/j.aca.2012.11.038

    Article  CAS  PubMed  Google Scholar 

  33. Chen XP, Han C, Cheng HY, Wang YC, Liu JH, Xu ZG, Hu L (2013) Rapid speciation analysis of mercury in seawater and marine fish by cation exchange chromatography hyphenated with inductively coupled plasma mass spectrometry. J Chromatogr A 1314:86–93. https://doi.org/10.1016/j.chroma.2013.08.104

    Article  CAS  PubMed  Google Scholar 

  34. Purcell SW, Mercier A, Conand C, Hamel JF, Toral-Granda MV, Lovatelli A, Uthicke S (2013) Sea cucumber fisheries: global analysis of stocks, management measures and drivers of overfishing. Fish Fish 14(1):34–59. https://doi.org/10.1111/j.1467-2979.2011.00443.x

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work from the PUMC Youth Fund and Fundamental Research Funds for the Central Universities (3332015143), Special Research Grant for Nonprofit Public Service (201507004-4), and CAMS Innovation Fund for Medical Sciences (2016-I2M-3-010, 2017-I2M-1-013) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shihai Yang or Meihua Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Luo, J., Ding, T. et al. Speciation Analysis of Trace Mercury in Sea Cucumber Species of Apostichopus japonicus Using High-Performance Liquid Chromatography Conjunction With Inductively Coupled Plasma Mass Spectrometry. Biol Trace Elem Res 186, 554–561 (2018). https://doi.org/10.1007/s12011-018-1309-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1309-y

Keywords

Navigation