Skip to main content

Advertisement

Log in

Selenium-Enriched Saccharomyces cerevisiae Reduces the Progression of Colorectal Cancer

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Colorectal cancer is one of the most common causes of mortality in the world while malnutrition is responsible for one third of the problem. Selenium has been recommended for prevention of colorectal cancer. The present study was conducted to investigate the effect of selenium-enriched Saccharomyces cerevisiae in reducing colorectal cancer progression in rats. Five groups of 170–200-g weight rats (n = 40) including healthy and cancer controls, Saccharomyces cerevisiae, selenium, and selenium-enriched Saccharomyces cerevisiae-treated groups were examined. All animals except healthy control group received 40 mg 1,2-dimethylhydrazine (DMH) per kilogram weight of rat twice a week. The healthy group received normal saline, and synchronously, selenium group received soluble selenium (4 mg/mL), Saccharomyces cerevisiae and selenium-enriched groups received yeast with the density of 5 × 108 CFU/mL by daily gavage. All treatments were carried out for 5 weeks after the last injection. Animals were autopsied, and aberrant crypt foci (ACF) of ejected colon were studied in the 40th week. Microscopic sections were prepared for hematoxylin and eosin. Furthermore, immunohistochemical staining of CD31, BCL2, and P53 antibodies was performed. Macroscopic and microscopic evaluations showed that DMH had the least destructive effect in selenium-enriched Saccharomyces cerevisiae group compared to other groups. Selenium-enriched Saccharomyces cerevisiae reduces colorectal cancer progression by various mechanisms such as reduction in the number and size of ACF and alteration in the function of the proteins such as P53, BCL2, and CD31.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zeng H (2009) Selenium as an essential micronutrient: roles in cell cycle and apoptosis. Molecules 14(3):1263–1278

    Article  PubMed  CAS  Google Scholar 

  2. Rayman MP (2004) The use of high-selenium yeast to raise selenium status: how does it measure up? Br J Nutr 92(04):557–573

    Article  PubMed  CAS  Google Scholar 

  3. Lu J, Jiang C (2001) Antiangiogenic activity of selenium in cancer chemoprevention: metabolite-specific effects. Nutr Cancer 40(1):64–73

    Article  PubMed  CAS  Google Scholar 

  4. Ip C, Dong Y, Ganther HE (2002) New concepts in selenium chemoprevention. Cancer Metastasis Rev 21(3):281–289

    Article  PubMed  CAS  Google Scholar 

  5. Zeng H, Briske-Anderson M, Idso JP, Hunt CD (2006) The selenium metabolite methylselenol inhibits the migration and invasion potential of HT1080 tumor cells. J Nutr 136(6):1528–1532

    Article  PubMed  CAS  Google Scholar 

  6. Thomadaki H, Scorilas A (2006) BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit Rev Clin Lab Sci 43(1):1–67

    Article  PubMed  CAS  Google Scholar 

  7. Zinkel S, Gross A, Yang E (2006) BCL2 family in DNA damage and cell cycle control. Cell Death Differ 13(8):1351–1359

    Article  PubMed  CAS  Google Scholar 

  8. Yip K, Reed J (2008) Bcl-2 family proteins and cancer. Oncogene 27(50):6398–6406

    Article  PubMed  CAS  Google Scholar 

  9. Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15(1):2–8

    Article  PubMed  CAS  Google Scholar 

  10. Bieging KT, Mello SS, Attardi LD (2014) Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 14(5):359–370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bolognani F, Rumney CJ, Pool-Zobel BL, Rowland IR (2001) Effect of lactobacilli, bifidobacteria and inulin on the formation of aberrant crypt foci in rats. Eur J Nutr 40(6):293–300

    Article  PubMed  CAS  Google Scholar 

  12. Steinbrenner H, Speckmann B, Sies H (2013) Toward understanding success and failures in the use of selenium for cancer prevention. Antioxid Redox Signal 19(2):181–191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Maseko T, Howell K, Dunshea FR, Ng K (2014) Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chem 146:327–333

    Article  PubMed  CAS  Google Scholar 

  14. Ortman K, Pehrson B (1999) Effect of selenate as a feed supplement to dairy cows in comparison to selenite and selenium yeast. J Anim Sci 77(12):3365–3370

    Article  PubMed  CAS  Google Scholar 

  15. Ellison, S. and A. Williams, Eurachem/CITAC guide: quantifying uncertainty in analytical measurement, 3rd edn. www.​ eurachem.​ org. 2012, Access

  16. Bird RP (1987) Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett 37(2):147–151

    Article  PubMed  CAS  Google Scholar 

  17. Pretlow TP, Pretlow TG (2005) Mutant KRAS in aberrant crypt foci (ACF): initiation of colorectal cancer? Biochimica et Biophysica Acta (BBA)-Rev Cancer 1756(2):83–96

    Article  CAS  Google Scholar 

  18. Ochiai M, Ushigome M, Fujiwara K, Ubagai T, Kawamori T, Sugimura T, Nagao M, Nakagama H (2003) Characterization of dysplastic aberrant crypt foci in the rat colon induced by 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine. Am J Pathol 163(4):1607–1614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Magnuson B, Shirtliff N, Bird R (1994) Resistance of aberrant crypt foci to apoptosis induced by azoxymethane in rats chronically fed cholic acid. Carcinogenesis 15(7):1459–1462

    Article  PubMed  CAS  Google Scholar 

  20. Fenoglio-Preiser CM, Noffsinger A (1999) Review article: aberrant crypt foci: a review. Toxicol Pathol 27(6):632–642

    Article  PubMed  CAS  Google Scholar 

  21. Caruso C et al (2004) Aging, longevity, inflammation, and cancer. Ann N Y Acad Sci 1028(1):1–13

    Article  PubMed  CAS  Google Scholar 

  22. Brown, A.C. and A. Valiere, Probiotics and medical nutrition therapy. Nutrition in clinical care: an official publication of Tufts University, 2004. 7(2): p. 56, 68

  23. Sanders ME, Guarner F, Guerrant R, Holt PR, Quigley EMM, Sartor RB, Sherman PM, Mayer EA (2013) An update on the use and investigation of probiotics in health and disease. Gut 62(5):787–796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Finley JW, Davis CD, Feng Y (2000) Selenium from high selenium broccoli protects rats from colon cancer. J Nutr 130(9):2384–2389

    Article  PubMed  CAS  Google Scholar 

  25. Sesink AL, Termont DS, Kleibeuker JH, van der Meer R (2000) Red meat and colon cancer: the cytotoxic and hyperproliferative effects of low concentrations of dietary heme. Gastroenterology 118(4):A282

    Article  Google Scholar 

  26. Ma Q, Williamson KE, O'Rourke D, Rowlands BJ (1999) The effects ofl-arginine on crypt cell hyperproliferation in colorectal cancer. J Surg Res 81(2):181–188

    Article  PubMed  CAS  Google Scholar 

  27. Vermeulen P, Verhoeven D, Fierens H, Hubens G, Goovaerts G, van Marck E, de Bruijn EA, van Oosterom A, Dirix LY (1995) Microvessel quantification in primary colorectal carcinoma: an immunohistochemical study. Br J Cancer 71(2):340–343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bauer JJ, Sesterhenn IA, Mostofi FK, McLeod DG, Srivastava S, Moul JW (1996) Elevated levels of apoptosis regulator proteins p53 and bcl-2 are independent prognostic biomarkers in surgically treated clinically localized prostate cancer. J Urol 156(4):1511–1516

    Article  PubMed  CAS  Google Scholar 

  29. Yemelyanova A, Vang R, Kshirsagar M, Lu D, Marks MA, Shih IM, Kurman RJ (2011) Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod Pathol 24(9):1248–1253

    Article  PubMed  CAS  Google Scholar 

  30. Xiao H, Hao X, Simi B, Ju J, Jiang H, Reddy BS, Yang CS (2008) Green tea polyphenols inhibit colorectal aberrant crypt foci (ACF) formation and prevent oncogenic changes in dysplastic ACF in azoxymethane-treated F344 rats. Carcinogenesis 29(1):113–119

    Article  PubMed  CAS  Google Scholar 

  31. Sengottuvelan M, Nalini N (2006) Dietary supplementation of resveratrol suppresses colonic tumour incidence in 1, 2-dimethylhydrazine-treated rats by modulating biotransforming enzymes and aberrant crypt foci development. Br J Nutr 96(01):145–153

    Article  PubMed  CAS  Google Scholar 

  32. Hamiza OO, Rehman MU, Tahir M, Khan R, Khan AQ, Lateef A, Ali F, Sultana S (2012) Amelioration of 1, 2 Dimethylhydrazine (DMH) induced colon oxidative stress, inflammation and tumor promotion response by tannic acid in Wistar rats. Asian Pac J Cancer Prev 13(9):4393–4402

    Article  PubMed  Google Scholar 

  33. Pretlow T et al. (1999) Aberrant crypt foci (ACF)-earliest recognized players or innocent bystanders in colon carcinogenesis. In: Falk Symposium. Kluwer Academic Publication

  34. McLellan E, Medline A, Bird R (1991) Sequential analyses of the growth and morphological characteristics of aberrant crypt foci: putative preneoplastic lesions. Cancer Res 51(19):5270–5274

    PubMed  CAS  Google Scholar 

  35. Rowland I, Rumney CJ, Coutts JT, Lievense LC (1998) Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis 19(2):281–285

    Article  PubMed  CAS  Google Scholar 

  36. Campbell-Thompson M, Lynch IJ, Bhardwaj B (2001) Expression of estrogen receptor (ER) subtypes and ER isoforms in colon cancer. Cancer Res 61(2):632–640

    PubMed  CAS  Google Scholar 

  37. Xu M-H, Deng CS, Zhu YQ, Lin J (2003) Role of inducible nitric oxide synthase expression in aberrant crypt foci-adenoma-carcinoma sequence. World J Gastroenterol 9(6):1246–1250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Jacobs ET, Jiang R, Alberts DS, Greenberg ER, Gunter EW, Karagas MR, Lanza E, Ratnasinghe L, Reid ME, Schatzkin A, Smith-Warner SA, Wallace K, Martinez ME (2004) Selenium and colorectal adenoma: results of a pooled analysis. J Natl Cancer Inst 96(22):1669–1675

    Article  PubMed  CAS  Google Scholar 

  39. Gallaher DD, Stallings WH, Blessing LL, Busta FF, Brady LJ (1996) Probiotics, cecal microflora, and aberrant crypts in the rat colon. J Nutr 126(5):1362–1371

    Article  PubMed  CAS  Google Scholar 

  40. Pool-Zobel B et al. (1996) Lactobacillus-and bifidobacterium-mediated antigenotoxicity in the colon of rats

  41. Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64(04):527–542

    Article  PubMed  CAS  Google Scholar 

  42. Chen W, Cao X, Zhu R (2003) Effect of selenium dioxide on proliferation, apoptosis, and elomerase activity of human lung cancer cell line in vitro. Ai Zheng 22(9):927–931

    PubMed  Google Scholar 

  43. Teodoro JG, Evans SK, Green MR (2007) Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome. J Mol Med 85(11):1175–1186

    Article  PubMed  CAS  Google Scholar 

  44. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Teodoro JG, Parker AE, Zhu X, Green MR (2006) p53-mediated inhibition of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 313(5789):968–971

    Article  PubMed  CAS  Google Scholar 

  46. Giatromanolaki A et al (1997) Comparative evaluation of angiogenesis assessment with anti-factor-VIII and anti-CD31 immunostaining in non-small cell lung cancer. Clin Cancer Res 3(12):2485–2492

    PubMed  CAS  Google Scholar 

  47. Laas E, Ballester M, Cortez A, Gonin J, Daraï E, Graesslin O (2014) Supervised clustering of immunohistochemical markers to distinguish atypical endometrial hyperplasia from grade 1 endometrial cancer. Gynecol Oncol 133(2):205–210

    Article  PubMed  CAS  Google Scholar 

  48. Henríquez-Hernández LA, Lloret M, Pinar B, Bordón E, Rey A, Lubrano A, Lara PC (2011) BCL-2, in combination with MVP and IGF-1R expression, improves prediction of clinical outcome in complete response cervical carcinoma patients treated by radiochemotherapy. Gynecol Oncol 122(3):585–589

    Article  PubMed  CAS  Google Scholar 

  49. Apostolou G, Apostolou N, Biteli M, Kavantzas N, Patsouris E, Athanassiadou P (2014) Utility of Ki-67, p53, Bcl-2, and Cox-2 biomarkers for low-grade endometrial cancer and disordered proliferative/benign hyperplastic endometrium by imprint cytology. Diagn Cytopathol 42(2):134–142

    Article  PubMed  Google Scholar 

  50. Combs GFJr and Lü J (2006) Selenium as a cancer preventive agent, in selenium. Springer, p. 249–264

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maedeh Vakili Saatloo or Ahmad Yari Khosroushahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi, J., Saatloo, M.V., Nejati, V. et al. Selenium-Enriched Saccharomyces cerevisiae Reduces the Progression of Colorectal Cancer. Biol Trace Elem Res 185, 424–432 (2018). https://doi.org/10.1007/s12011-018-1270-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1270-9

Keywords

Navigation