Skip to main content
Log in

Influences of Copper/Zinc-Loaded Montmorillonite on Growth Performance, Mineral Retention, Intestinal Morphology, Mucosa Antioxidant Capacity, and Cytokine Contents in Weaned Piglets

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effects of copper/zinc-loaded montmorillonite (Cu/Zn-Mt) on growth performance, mineral retention, intestinal morphology, mucosa antioxidant capacity, and cytokine contents in weaned piglets were investigated in the present study. One hundred eight piglets weaned at 21 ± 1 days of age (Duroc × Landrace× Yorkshire; average initial weight of 6.36 kg) were allotted to three treatments for 2 weeks. The three treatments were as follows: (1) control group: basal diet; (2) Cu/Zn-Mt group: basal diet + 39 mg/kg Cu and 75 mg/kg Zn as Cu/Zn-Mt; (3) Cu + Zn + Mt group: basal diet + mixture of CuSO4, ZnSO4, and Mt (equal amount of Cu, Zn, and Mt to the Cu/Zn-Mt group). Each treatment had six pens of six piglets. The results showed that as compared with the control group and the Cu + Zn + Mt group, Cu/Zn-Mt supplementation increased (P < 0.05) the average daily gain and the gain/feed ratio; Cu/Zn-Mt supplementation increased (P < 0.05) the Cu and Zn concentrations in serum, jejunum, and ileum mucosa, villus height, the ratio of villus height to crypt depth, and the activities of SOD, GSH-Px, and IL-10 levels, and decreased the malondialdehyde concentrations in the jejunum and ileum, and intestinal IL-1β, IL-6, and TNF-α levels. Moreover, supplementation with the mixture of CuSO4, ZnSO4, and Mt had no effect on the growth performance, but increased the mucosa Cu and Zn concentrations, intestinal morphology, antioxidant capacity, and immune function in the duodenum, while it had no effect on the above indexes in the jejunum and ileum. The results indicated that Mt could be used as a controlled carrier for Cu and Zn, which made Cu/Zn-Mt have better biological activities in the intestine than the mixture of Cu, Zn, and Mt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hood MI, Skaar EP (2012) Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 10(8):525–537. https://doi.org/10.1038/nrmicro2836

    Article  PubMed  CAS  Google Scholar 

  2. Poulsen HD (1998) Zinc and copper as feed additives, growth factors or unwanted environmental factors. J Anim Feed Sci 7(Suppl. 1):135–142. https://doi.org/10.22358/jafs/69961/1998

    Article  Google Scholar 

  3. Hedemann MS, Jensen BB, Poulsen HD (2006) Influence of dietary zinc and copper on digestive enzyme activity and intestinal morphology in weaned pigs. J Anim Sci 84(12):3310–3320. https://doi.org/10.2527/jas.2005-701

    Article  PubMed  CAS  Google Scholar 

  4. Jondreville C, Revy PS, Dourmad JY (2003) Dietary means to better control the environmental impact of copper and zinc by pigs from weaning to slaughter. Livest Prod Sci 84(2):147–156. https://doi.org/10.1016/j.livprodsci.2003.09.011

    Article  Google Scholar 

  5. Bhattacharyya KG, Gupta SS (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interf Sci 140(2):114–131. https://doi.org/10.1016/j.cis.2007.12.008

    Article  CAS  Google Scholar 

  6. Rodrigues LA, Figueiras A, Veiga F, de Freitas RM, Nunes LC, da Silva Filho EC, da Silva Leite CM (2013) The systems containing clays and clay minerals from modified drug release: a review. Colloids Surf B Biointerfaces 103:642–651. https://doi.org/10.1016/j.colsurfb.2012.10.068

    Article  PubMed  CAS  Google Scholar 

  7. Hua SB, Yang HX, Wang WB, Wang AQ (2010) Controlled release of ofloxacin from chitosan-montmorillonite hydrogel. Appl Clay Sci 50(1):112–117. https://doi.org/10.1016/j.clay.2010.07.012

    Article  CAS  Google Scholar 

  8. Joshi GV, Kevadiya BD, Patel HA, Bajaj HC, Jasra RV (2009) Montmorillonite as a drug delivery system: intercalation and in vitro release of timolol maleate. Int J Pharm 374(1-2):53–57. https://doi.org/10.1016/j.ijpharm.2009.03.004

    Article  PubMed  CAS  Google Scholar 

  9. Zhang Y, Long M, Huang P, Yang HM, Chang S, Hu YH, Tang AD, Mao LF (2016) Emerging integrated nanoclay-facilitated drug delivery system for papillary thyroid cancer therapy. Sci Rep-UK 6(1):33335. https://doi.org/10.1038/srep33335

    Article  CAS  Google Scholar 

  10. Joshi GV, Patel HA, Kevadiya BD, Bajaj HC (2009) Montmorillonite intercalated with vitamin B-1 as drug carrier. Appl Clay Sci 45(4):248–253. https://doi.org/10.1016/j.clay.2009.06.001

    Article  CAS  Google Scholar 

  11. Malachova K, Praus P, Rybkova Z, Kozak O (2011) Antibacterial and antifungal activities of silver, copper and zinc montmorillonites. Appl Clay Sci 53(4):642–645. https://doi.org/10.1016/j.clay.2011.05.016

    Article  CAS  Google Scholar 

  12. Slamova R, Trckova M, Vondruskova H, Zraly Z, Pavlik I (2011) Clay minerals in animal nutrition. Appl Clay Sci 51(4):395–398. https://doi.org/10.1016/j.clay.2011.01.005

    Article  CAS  Google Scholar 

  13. Jiao LF, Lin FH, Cao ST, Wang CC, Wu H, Shu MA, Hu CH (2017) Preparation, characterization, antimicrobial and cytotoxicity studies of copper/zinc-loaded montmorillonite. J Anim Sci Biotechnol 8(1):27. https://doi.org/10.1186/s40104-017-0156-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. National Research Council (1998) Nutrient requirements of swine: 10th revised edition. National Academy Press, Washington, DC, 212 p

    Google Scholar 

  15. Hu CH, Xiao K, Luan ZS, Song J (2013) Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J Anim Sci 91(3):1094–1101. https://doi.org/10.2527/jas.2012-5796

    Article  PubMed  CAS  Google Scholar 

  16. Kevadiya BD, Bajaj HC (2013) The layered silicate, montmorillonite (MMT) as a drug delivery carrier: layered clay materials for functional applications. Biomacromolecules 571:111–132

    Google Scholar 

  17. Lin FH, Lee YH, Jian CH, Wong JM, Shieh MJ, Wang CY (2002) A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials 23(9):1981–1987. https://doi.org/10.1016/S0142-9612(01)00325-8

    Article  PubMed  CAS  Google Scholar 

  18. Vaiana CA, Leonard MK, Drummy LF, Singh KM, Bubulya A, Bubulya A, Vaia RA, Naik RR, Kadakia MP (2011) Epidermal growth factor: layered silicate nanocomposites for tissue regeneration. Biomacromolecules 12(9):3139–3146. https://doi.org/10.1021/bm200616v

    Article  PubMed  CAS  Google Scholar 

  19. Zheng JP, Luan L, Wang HY, Xi LF, Yao KD (2007) Study on ibuprofen/montmorillonite intercalation composites as drug release system. Appl Clay Sci 36(4):297–301. https://doi.org/10.1016/j.clay.2007.01.012

    Article  CAS  Google Scholar 

  20. Hill GM, Cromwell GL, Crenshaw TD, Dove CR, Ewan RC, Knabe DA, Lewis AJ, Libal GW, Mahan DC, Shurson GC, Southern LL, Veum TL (2000) Growth promotion effects and plasma changes from feeding high dietary concentrations of zinc and copper to weanling pigs (regional study). J Anim Sci 78(4):1010–1016. https://doi.org/10.2527/2000.7841010x

    Article  PubMed  CAS  Google Scholar 

  21. Carlson MS, Hill GM, Link JE (1999) Early- and traditionally weaned nursery pigs benefit from phase-feeding pharmacological concentrations of zinc oxide: effect on metallothionein and mineral concentrations. J Anim Sci 77(5):1199–1207. https://doi.org/10.2527/1999.7751199x

    Article  PubMed  CAS  Google Scholar 

  22. Jiao LF, Song ZH, Ke YL, Xiao K, Hu CH, Shi B (2014) Cello-oligosaccharide influences intestinal microflora, mucosal architecture and nutrient transport in weaned pigs. Anim Feed Sci Technol 195:85–91. https://doi.org/10.1016/j.anifeedsci.2014.05.014

    Article  CAS  Google Scholar 

  23. Hedemann MS, Hojsgaard S, Jensen BB (2003) Small intestinal morphology and activity of intestinal peptidases in piglets around weaning. J Anim Physiol Anim Nutr 87(1-2):32–41. https://doi.org/10.1046/j.1439-0396.2003.00405.x

    Article  CAS  Google Scholar 

  24. Ma WQ, Niu HH, Feng J, Wang Y, Feng J (2011) Effects of zinc glycine chelate on oxidative stress, contents of trace elements, and intestinal morphology in broilers. Biol Trace Elem Res 142(3):546–556. https://doi.org/10.1007/s12011-010-8824-9

    Article  PubMed  CAS  Google Scholar 

  25. Southon S, Gee JM, Bayliss CE, Wyatt GM, Horn N, Johnson IT (1986) Intestinal microflora, morphology and enzyme-activity in zinc-deficient and Zn-supplemented rats. Br J Nutr 55(03):603–611. https://doi.org/10.1079/BJN19860065

    Article  PubMed  CAS  Google Scholar 

  26. Li BT, Van Kessel AG, Caine WR, Huang SX, Kirkwood RN (2001) Small intestinal morphology and bacterial populations in ileal digesta and feces of newly weaned pigs receiving a high dietary level of zinc oxide. Can J Anim Sci 81(4):511–516. https://doi.org/10.4141/A01-043

    Article  CAS  Google Scholar 

  27. Zhu LH (2013) Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs. J Anim Sci 91:1522–1522

    Article  CAS  Google Scholar 

  28. Yin J, Wu MM, Xiao H, Ren WK, Duan JL, Yang G, Li TJ, Yin YL (2014) Development of an antioxidant system after early weaning in piglets. J Anim Sci 92(2):612–619. https://doi.org/10.2527/jas.2013-6986

    Article  PubMed  CAS  Google Scholar 

  29. Schuessel K, Schafer S, Bayer TA, Czech C, Pradier L, Muller-Spahn F, Muller WE, Eckert A (2005) Impaired Cu/Zn-SOD activity contributes to increased oxidative damage in APP transgenic mice. Neurobiol Dis 18(1):89–99. https://doi.org/10.1016/j.nbd.2004.09.003

    Article  PubMed  CAS  Google Scholar 

  30. Prasad AS, Bao B, Beck FWJ, Kucuk O, Sarkar FH (2004) Antioxidant effect of zinc in humans. Free Radic Biol Med 37(8):1182–1190. https://doi.org/10.1016/j.freeradbiomed.2004.07.007

    Article  PubMed  CAS  Google Scholar 

  31. Song Y, Leonard SW, Traber MG, Ho E (2009) Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J Nutr 139(9):1626–1631. https://doi.org/10.3945/jn.109.106369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. O'Shea JJ, Murray PJ (2008) Cytokine signaling modules in inflammatory responses. Immunity 28(4):477–487. https://doi.org/10.1016/j.immuni.2008.03.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pie S, Lalles JP, Blazy F, Laffitte J, Seve B, Oswald IP (2004) Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J Nutr 134(3):641–647. https://doi.org/10.1093/jn/134.3.641

    Article  PubMed  CAS  Google Scholar 

  34. Papadakis KA, Targan SR (2000) Role of cytokines in the pathogenesis of inflammatory bowel disease. Annu Rev Med 51(1):289–298. https://doi.org/10.1146/annurev.med.51.1.289

    Article  PubMed  CAS  Google Scholar 

  35. Eller T, Vasar V, Shlik J, Maron E (2008) Pro-inflammatory cytokines and treatment response to escitaloprsam in major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 32(2):445–450. https://doi.org/10.1016/j.pnpbp.2007.09.015

    Article  CAS  Google Scholar 

  36. Haase H, Rink L (2014) Multiple impacts of zinc on immune function. Metallomics 6(7):1175–1180. https://doi.org/10.1039/c3mt00353a

    Article  PubMed  CAS  Google Scholar 

  37. Prasad AS (2009) Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr 12(6):646–652. https://doi.org/10.1097/MCO.0b013e3283312956

    Article  CAS  Google Scholar 

  38. Dardenne M (2002) Zinc and immune function. Eur J Clin Nutr 56(S3):S20–S23. https://doi.org/10.1038/sj.ejcn.1601479

    Article  PubMed  CAS  Google Scholar 

  39. von Bulow V, Dubben S, Engelhardt G, Hebel S, Plumakers B, Heine H, Rink L, Haase H (2007) Zinc-dependent suppression of TNF-alpha production is mediated by protein kinase A-induced inhibition of Raf-1, I kappa B kinase beta, and NF-kappa B. J Immunol 179(6):4180–4186. https://doi.org/10.4049/jimmunol.179.6.4180

    Article  Google Scholar 

  40. Sargeant HR, Miller HM, Shaw MA (2011) Inflammatory response of porcine epithelial IPEC J2 cells to enterotoxigenic E. coli infection is modulated by zinc supplementation. Mol Immunol 48(15-16):2113–2121. https://doi.org/10.1016/j.molimm.2011.07.002

    Article  PubMed  CAS  Google Scholar 

  41. Berthon G (1993) Is copper pro-inflammatory or antiinflammatory? Reconciling view and a novel-approach for the use of copper in the control of inflammation. Agents Actions 39(3-4):210–217. https://doi.org/10.1007/BF01998975

    Article  PubMed  CAS  Google Scholar 

  42. Trinchero A, Bonora S, Tinti A, Fini G (2004) Spectroscopic behavior of copper complexes of nonsteroidal anti-inflammatory drugs. Biopolymers 74(1-2):120–124. https://doi.org/10.1002/bip.20057

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program (2016YFD0501210), Zhejiang Province Major Science and Technology Project (2015C03006), Zhejiang Province Key R&D Project (2015C02022), Special Fund for Agro-scientific Research in the Public Interest (201403047), and Dabeinong Funds for Discipline Development and Talent Training in Zhejiang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Hu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, L.F., Zhang, Q.H., Wu, H. et al. Influences of Copper/Zinc-Loaded Montmorillonite on Growth Performance, Mineral Retention, Intestinal Morphology, Mucosa Antioxidant Capacity, and Cytokine Contents in Weaned Piglets. Biol Trace Elem Res 185, 356–363 (2018). https://doi.org/10.1007/s12011-018-1259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1259-4

Keywords

Navigation