Skip to main content
Log in

Effects of Copper and Zinc Supplementation on Weight Gain and Hematological Parameters in Pre-weaning Calves

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cow-calf operations may be affected by trace mineral deficiencies, particularly copper (Cu) and zinc (Zn) deficiency, which may decrease the calf daily weight gain and alter hematological parameters. We evaluated the effect of Cu and Zn supplementation on pre-weaning calves (n = 40; 92 ± 6 kg initial body weight) from the Salado River basin, Buenos Aires, Argentina. Calves were divided into four groups (n = 10 each) and subcutaneously administered 0.3 mg/kg Cu (Cu group), 1 mg/kg Zn (Zn group), Cu and Zn together (Cu + Zn group), and sterile saline solution (control group) every 40 days for 120 days. Plasma Cu and Zn concentrations, hematological parameters, and weight were recorded every 40 days. A completely randomized 2 × 2 factorial treatment design was used and data were analyzed with a mixed model for repeated measures over time. Cu and Zn were detected in plasma after the second sampling. Cu × Zn interaction was significant (p = 0.09), being Cu concentration higher in the Cu + Zn than in the Cu group. Differences in weight gain (Zn × time interaction; p < 0.01) were observed in the Zn but not in the Cu group (p > 0.1). On the other hand, none of the treatments altered any of the hematological parameters assessed (p > 0.1). Our results show the risk of lower weight gain due to Zn deficiency in pre-weaning calves raised in the Salado River basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richards MP (1989) Recent developments in trace element metabolism and function: role of metallothionein in copper and zinc metabolism. J Nutr 119(7):1062–1070

    Article  PubMed  CAS  Google Scholar 

  2. Enjalbert F, Lebreton P, Salat O (2006) Effects of copper, zinc and selenium status on performance and health in commercial dairy and beef herds: retrospective study. J Anim Physiol Anim Nutr (Berl) 90(11–12):459–466. https://doi.org/10.1111/j.1439-0396.2006.00627.x

    Article  CAS  Google Scholar 

  3. Suttle NF (2010) Copper. In: Suttle NF (ed) The mineral nutrition of livestock, 4th edn. Oxfordshire, UK, pp 255–305. https://doi.org/10.1079/9781845934729.0255

    Chapter  Google Scholar 

  4. Némoz JP (2013) Principales características de la actividad ganadera vacuna en el área de la EEA Cuenca del Salado. Informe INTA-RIAN. Available at https://inta.gob.ar/documentos/principales-caracteristicas-de-la-actividad-ganadera-vacuna-en-el-area-de-la-eea-cuenca-del-salado. Accessed 15 Nov 2017

  5. Mattioli GA, Ramírez CE, Giuliodori MJ, Tittarelli CM, Yano H, Matsui H (1996) Characterization of cattle copper deficiency in the Magdalena District. Livest Prod Sci 47(1):7–10. https://doi.org/10.1016/S0301-6226(96)01004-4

    Article  Google Scholar 

  6. Ramírez CE, Mattioli GA, Tittarelli CM, Giuliodori MJ, Yano H (1998) Cattle hypocuprosis in Argentina associated with periodically flooded soils. Livest Prod Sci 55(1):47–52. https://doi.org/10.1016/S0301-6226(98)00120-1

    Article  Google Scholar 

  7. Ramírez CE, Mattioli GA, Giuliodori MJ, Yano H, Matsui I (1998) Deficiencia de Zn en bovinos de cría de la provincia de Buenos Aires. Vet Argent 15(142):114–118

    Google Scholar 

  8. Engle TE, Nockels CF, Kimberling CV, Weaber DL, Johnson AB (1997) Zinc repletion with organic or inorganic forms of zinc and protein turnover in marginally zinc-deficient calves. J Anim Sci 75(11):3074–3081. https://doi.org/10.2527/1997.75113074x

    Article  PubMed  CAS  Google Scholar 

  9. Arrayet JL, Oberbauer AM, Famula TR, Garnett I, Oltjen JW, Imhoof J, Kehrli ME, Graham TW (2002) Growth of Holstein calves from birth to 90 days: the influence of dietary zinc and BLAD status. J Anim Sci 80(3):545–552. https://doi.org/10.2527/2002.803545x

    Article  PubMed  CAS  Google Scholar 

  10. Sharma MC, Joshi C (2005) Therapeutic efficacy of zinc sulphate used in clustered model treatment in alleviating zinc deficiency in cattle and its effect on hormones, vitamins and production parameters. Vet Res Commun 29(7):609–628. https://doi.org/10.1007/s11259-005-3382-x

    Article  PubMed  CAS  Google Scholar 

  11. Kincaid RL (1999) Assessment of trace mineral status of ruminants: a review. Proc Am Soc Anim Sci 77(1):1–10

    Google Scholar 

  12. Sharma MC, Joshi C, Pathak NN, Kaur H (2005) Copper status and enzyme, hormone, vitamin and immune function in heifers. Res Vet Sci 79(2):113–123. https://doi.org/10.1016/j.rvsc.2004.11.015

    Article  PubMed  CAS  Google Scholar 

  13. Hamm JW, Bettany JR, Halstead EH (1973) A soil test for sulfur and interpretative criteria for Saskatchewan. Comm Soil Sci Plant Anal 4:219–231

    Article  CAS  Google Scholar 

  14. Fazzio LE, Mattioli GA, Picco SJ, Rosa DE, Minatel L, Gimeno EJ (2010) Diagnostic value of copper parameters to predict growth of suckling calves grazing native range in Argentina. Pesquisa Veterinária Brasileira 30(10):827–832. https://doi.org/10.1590/S0100-736X2010001000004

    Article  Google Scholar 

  15. Dargatz DA, Garry FB, Clark GB, Ross PF (1999) Serum copper concentrations in beef cows and heifers. J Am Vet Med Assoc 215(12):1828–1832

    PubMed  CAS  Google Scholar 

  16. National Research Council (2000) Nutrient requirements of beef cattle, seventh revised edition: update 2000. The National Academies Press, Washington, DC, pp 54–74. Available at https://www.nap.edu/catalog/9791/nutrient-requirements-of-beef-cattle-seventh-revised-edition-update-2000. Accessed 15 Nov 2017

  17. Gould L, Kendall NR (2011) Role of the rumen in copper and thiomolybdate absorption. Nutr Res Rev 24(2):176–182. https://doi.org/10.1017/S0954422411000059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Formigari A, Irato P, Santon A (2007) Zinc, antioxidant systems and metallothionein in metal mediated-apoptosis: biochemical and cytochemical aspects. Comp Biochem Physiol C Toxicol Pharmacol 146(4):443–459. https://doi.org/10.1016/j.cbpc.2007.07.010

    Article  PubMed  CAS  Google Scholar 

  19. Arredondo M, Núñez MT (2005) Iron and copper metabolism. Mol Asp Med 26(4–5):313–327. https://doi.org/10.1016/j.mam.2005.07.010

    Article  CAS  Google Scholar 

  20. Liu J, Zhou ZX, Zhang W, Bell MW, Waalkes MP (2009) Changes in hepatic gene expression in response to hepatoprotective levels of zinc. Liver Int 29(8):1222–1229. https://doi.org/10.1111/j.1478-3231.2009.02007.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bengoumi M, Essamadi K, Charcornac JP, Tressol JC, Faye B (1998) Comparative relationship between copper-zinc plasma concentrations and superoxide dismutase activity in camels and cows. Vet Res 29(6):557–565

    PubMed  CAS  Google Scholar 

  22. Norii T (2008) Growth of zinc-deficient rats during intra-gastric tube feeding. Biol Trace Elem Res 122(3):266–275. https://doi.org/10.1007/s12011-007-8073-8

    Article  PubMed  CAS  Google Scholar 

  23. Jing MY, Sun JY, Wang JF (2008) The effect of peripheral administration of zinc on food intake in rats fed Zn-adequate or Zn-deficient diets. Biol Trace Elem Res 124(2):144–156. https://doi.org/10.1007/s12011-008-8132-9

    Article  PubMed  CAS  Google Scholar 

  24. MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130(5):1500–1508

    Article  Google Scholar 

  25. Levenson CW (2003) Zinc regulation of food intake: new insights on the role of neuropeptide Y. Nutr Rev 61(7):247–249

    Article  PubMed  Google Scholar 

  26. Mufarrege DJ, Aguilar DE (2001) Suplementación con zinc de los bovinos para carne en la provincia de Corrientes. E.E.A. INTA Mercedes, Corrientes, Noticias y Comentarios Nº 348: 1–4. Available at http://www.produccion-animal.com.ar/suplementacion_mineral/58-suplementacion_con_zinc.pdf. Accessed 15 Nov 2017

  27. Beeson WM, Perry TW, Zurcher TD (1977) Effect of supplemental zinc on growth and on hair and blood serum levels of beef cattle. J Anim Sci 45(1):160–165. https://doi.org/10.2527/jas1977.451160x

    Article  PubMed  CAS  Google Scholar 

  28. Spears JW, Kegley EB (2002) Effect of zinc source (zinc oxide vs zinc proteinate) and level on performance, carcass characteristics, and immune response of growing and finishing steers. J Anim Sci 80(10):2747–2752. https://doi.org/10.2527/2002.80102747x

    Article  PubMed  CAS  Google Scholar 

  29. Neathery MW, Miller WP, Blackmon DM, Gentry RP, Jones JB (1973) Absorption and tissue zinc content in lactating dairy cows as affected by low dietary zinc. J Anim Sci 37(3):848–852. https://doi.org/10.2527/jas1973.373848x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Di Maggio for manuscript correction and edition and to Dr. Darío Piacentini for edetate Cu and Zn solutions.

Funding

This study was supported by a grant from the National Program of Incentives to Teaching and Research, Secretary of University Policies, Ministry of Education of Argentina (grant no. 11/V204, School of Veterinary Sciences, National University of La Plata). The sponsor had no involvement in the study design, collection, analysis, or interpretation of the data presented in this paper.

Author information

Authors and Affiliations

Authors

Contributions

G.A.M. and L.E.F. conceived and designed the experiments; D.E.R., and E.M.G. conducted the experiments; A.E.R. analyzed the data; E.T., G.A.M., and L.E.F. critically wrote and revised the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guillermo Alberto Mattioli.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattioli, G.A., Rosa, D.E., Turic, E. et al. Effects of Copper and Zinc Supplementation on Weight Gain and Hematological Parameters in Pre-weaning Calves. Biol Trace Elem Res 185, 327–331 (2018). https://doi.org/10.1007/s12011-017-1239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1239-0

Keywords

Navigation