Skip to main content

Advertisement

Log in

Low, but Not High, Doses of Copper Sulfate Impair Synaptic Plasticity in the Hippocampal CA1 Region In Vivo

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Previous studies have shown the inhibitory effect of the in vitro application of copper sulfate on hippocampal long-term potentiation. While in vivo administration of copper did not affect spatial learning and memory. To find possible answers to this controversial issue, we evaluate the effect of different doses of copper sulfate on in vivo long-term potentiation, synaptic transmission, and paired-pulse behavior of CA1 pyramidal cells. Thirty-two male Wistar rats were divided into four groups: control, 5, 10, and 15 mg of copper sulfate. Field excitatory postsynaptic potential from the stratum radiatum of CA1 neurons was recorded following Schaffer collateral stimulation in rats. Spike amplitude, long-term potentiation and paired-pulse index were measured in all groups. The results of this study showed that 5 mg/kg copper sulfate increased synaptic transmission and inhibited long-term potentiation and decreased the hippocampal paired-pulse ratio, while 10 and 15 mg/kg copper sulfate did not affect CA1 synaptic transmission properties. Low, but not high, doses of copper sulfate affect synaptic plasticity. This finding may explain the difference between the effect of copper on synaptic plasticity and spatial learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fujiwara N, Iso H, Kitanaka N, Kitanaka J, Eguchi H, Ookawara T, Ozawa K, Shimoda S, Yoshihara D, Takemura M, Suzuki K (2006) Effects of copper metabolism on neurological functions in Wistar and Wilson’s disease model rats. Biochem Biophys Res Commun 349(3):1079–1086. https://doi.org/10.1016/j.bbrc.2006.08.139

    Article  CAS  PubMed  Google Scholar 

  2. Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63(5):797S–811S

    CAS  PubMed  Google Scholar 

  3. Das SK, Ray K (2006) Wilson’s disease: an update. Nat Clin Pract Neurol 2(9):482–493. https://doi.org/10.1038/ncpneuro0291

    Article  CAS  PubMed  Google Scholar 

  4. Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106(6):1995–2044. https://doi.org/10.1021/cr040410w

    Article  CAS  PubMed  Google Scholar 

  5. Vaz FNC, Fermino BL, Haskel MVL, Wouk J, de Freitas GBL, Fabbri R, Montagna E, Rocha JBT, Bonini JS (2017) The relationship between copper, iron, and selenium levels and Alzheimer disease. Biol Trace Elem Res:1–7. https://doi.org/10.1007/s12011-017-1042-y

    Article  PubMed  Google Scholar 

  6. Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6(4):221–230. https://doi.org/10.1006/nbdi.1999.0250

    Article  CAS  PubMed  Google Scholar 

  7. Becker JT, Walker JA, Olton DS (1980) Neuroanatomical bases of spatial memory. Brain Res 200(2):307–320. https://doi.org/10.1016/0006-8993(80)90922-1

    Article  CAS  PubMed  Google Scholar 

  8. Nicoll RA (2017) A brief history of long-term potentiation. Neuron 93(2):281–290. https://doi.org/10.1016/j.neuron.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  9. Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84(1):87–136. https://doi.org/10.1152/physrev.00014.2003

    Article  CAS  PubMed  Google Scholar 

  10. Lynch G, Cox CD, Gall CM (2014) Pharmacological enhancement of memory or cognition in normal subjects. Front Syst Neurosci 8:90. https://doi.org/10.3389/fnsys.2014.00090

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bannerman DM, Sprengel R, Sanderson DJ, McHugh SB, Rawlins JN, Monyer H, Seeburg PH (2014) Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 15(3):181–192. https://doi.org/10.1038/nrn3677

    Article  CAS  PubMed  Google Scholar 

  12. Baudry M, Zhu G, Liu Y, Wang Y, Briz V, Bi X (2015) Multiple cellular cascades participate in long-term potentiation and in hippocampus-dependent learning. Brain Res 1621:73–81. https://doi.org/10.1016/j.brainres.2014.11.033

    Article  CAS  PubMed  Google Scholar 

  13. Doreulee N, Yanovsky Y, Haas HL (1997) Suppression of long-term potentiation in hippocampal slices by copper. Hippocampus 7(6):666–669. https://doi.org/10.1002/(SICI)1098-1063(1997)7:6<666::AID-HIPO8>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  14. Kapkaeva MR, Popova OV, Kondratenko RV, Rogozin PD, Genrikhs EE, Stelmashook EV, Skrebitsky VG, Khaspekov LG, Isaev NK (2017) Effects of copper on viability and functional properties of hippocampal neurons in vitro. Exp Toxicol Pathol 69(5):259–264. https://doi.org/10.1016/j.etp.2017.01.011

    Article  CAS  PubMed  Google Scholar 

  15. Leiva J, Palestini M, Infante C, Goldschmidt A, Motles E (2009) Copper suppresses hippocampus LTP in the rat, but does not alter learning or memory in the morris water maze. Brain Res 1256:69–75. https://doi.org/10.1016/j.brainres.2008.12.041

    Article  CAS  PubMed  Google Scholar 

  16. Palizvan MR, Jand A, Jand Y, Taherinejad MR (2016) A study on the effects of orally administered copper sulfate on learning and spatial memory of wistar rats. J Babol Univ Med Sci 18(1):31–36. https://doi.org/10.22088/jbums.18.1.31

    Article  Google Scholar 

  17. Paxinos G, Watson C (2013) The rat brain in stereotaxic coordinates. Elsevier, Academic Press

    Google Scholar 

  18. Yorns W Jr, Blaise J, Bronzino J (2004) Frequency-dependent changes in the paired-pulse index in the hippocampus of the freely moving adult male rat. Exp Neurol 186(1):104–108. https://doi.org/10.1016/j.expneurol.2003.09.022

    Article  PubMed  Google Scholar 

  19. Goldschmith A, Infante C, Leiva J, Motles E, Palestini M (2005) Interference of chronically ingested copper in long-term potentiation (LTP) of rat hippocampus. Brain Res 1056(2):176–182. https://doi.org/10.1016/j.brainres.2005.07.030

    Article  CAS  PubMed  Google Scholar 

  20. Leiva J, Gaete P, Palestini M (2003) Copper interaction on the long-term potentiation. Arch Ital Biol 141(4):149–155

    CAS  PubMed  Google Scholar 

  21. Vlachová V, Zemková H, Vyklický L (1996) Copper modulation of NMDA responses in mouse and rat cultured hippocampal neurons. Eur J Neurosci 8(11):2257–2264. https://doi.org/10.1111/j.1460-9568.1996.tb01189.x

    Article  PubMed  Google Scholar 

  22. Weiser T, Wienrich M (1996) The effects of copper ions on glutamate receptors in cultured rat cortical neurons. Brain Res 742(1–2):211–218. https://doi.org/10.1016/S0006-8993(96)01009-8

    Article  CAS  PubMed  Google Scholar 

  23. Collingridge GL (2003) The induction of N-methyl-D-aspartate receptor-dependent long-term potentiation. Philos Trans R Soc Lond Ser B Biol Sci 358(1432):635–641. https://doi.org/10.1098/rstb.2002.1241

    Article  CAS  Google Scholar 

  24. Zhang Y, Lu W, Han M, Li H, Luo H, Li W, Luo W, Lin Z (2016) Biphasic effects of copper on rat learning and memory in the Morris water maze. Ann Clin Lab Sci 46(4):346–352

    CAS  PubMed  Google Scholar 

  25. Plech A, Klimkiewicz T, Jakrzewska H (2000) Neurotoxic effect of copper salts in rats. Pol J Environ Stud 9(4):301–304

    CAS  Google Scholar 

  26. Margineanu DG, Wulfert E (2000) Differential paired-pulse effects of gabazine and bicuculline in rat hippocampal CA3 area. Brain Res Bull 51(1):69–74. https://doi.org/10.1016/S0361-9230(99)00209-9

    Article  CAS  PubMed  Google Scholar 

  27. Stanford IM, Wheal HV, Chad JE (1995) Bicuculline enhances the late GABAB receptor-mediated paired-pulse inhibition observed in rat hippocampal slices. Eur J Pharmacol 277(2–3):229–234. https://doi.org/10.1016/0014-2999(95)00083-W

    Article  CAS  PubMed  Google Scholar 

  28. Davies CH, Davies SN, Collingridge GL (1990) Paired-pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus. J Physiol 424(1):513–531. https://doi.org/10.1113/jphysiol.1990.sp018080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zeng X, Tietz EI (1997) Depression of early and late monosynaptic inhibitory postsynaptic potentials in hippocampal CA1 neurons following prolonged benzodiazepine administration: role of a reduction in Cl-driving force. Synapse 25(2):125–136. https://doi.org/10.1002/(SICI)1098-2396(199702)25:2<125::AID-SYN3>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Financial support for this study was provided by Deputy Vice-chancellor of research on Arak University of Medical Sciences Grant # 628.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Palizvan.

Ethics declarations

Ethical Approval

Ethical approval for the study was provided by the Arak University of Medical Sciences Research Ethics Committee # 89-80-3.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jand, A., Taheri-nejad, M.R., Mosleh, M. et al. Low, but Not High, Doses of Copper Sulfate Impair Synaptic Plasticity in the Hippocampal CA1 Region In Vivo. Biol Trace Elem Res 185, 143–147 (2018). https://doi.org/10.1007/s12011-017-1234-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1234-5

Keywords

Navigation