Skip to main content

Advertisement

Log in

Serum Concentration of Macro-, Micro-, and Trace Elements in Silver Fox (Vulpes vulpes) and Their Interrelationships with Morphometric, Densitometric, and Mechanical Properties of the Mandible

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The optimal content of macro-, micro-, and trace elements in tissues ensures proper systemic growth and development and optimal health status in animals and humans. However, very little is known on the elemental content in the plasma compartment in Silver fox. The aim of this study was to determine the content of selected elements in serum obtained from 8-month-old female (N = 8) and male (N = 7) silver foxes. Moreover, relationships of the evaluated elements with the morphological, densitometric, and mechanical parameters of the mandible were determined. Serum content of 12 different elements was measured using inductively coupled plasma-atomic emission spectrometry. The morphometric and densitometric properties of the mandible were determined using quantitative computed tomography method, while mechanical endurance was tested using a three-point bending test. Serum concentration of calcium was significantly higher by 20% in male foxes (P = 0.01), while manganese concentration was significantly lower in males by over 17% (P = 0.03). Positive correlations of serum concentration of calcium, phosphorus, and magnesium with the morphological traits of the mandible such as weight, length, and bone volume were stated (P < 0.05). In the group of elements playing regulatory functions, the positive relationships between serum concentrations of selenium, chromium, manganese, copper, and cobalt were found (P < 0.05). The elaborated experimental model may serve for further studies on foxes, especially focused on nutritional factors affecting elemental homeostasis, whole-body metabolism, and systemic growth and development. Daily diet formulation and precise delivery for farm foxes, together with relatively large animal population maintained at the same environmental conditions, regularly subjected to slaughter procedure, enable economical experimentation with various dietary and pharmacological manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Studziński T, Matras J, Grela ER, Valverde Pietra JL, Truchliński J, Tatara MR (2006) Minerals: functions, requirements, excessive intake and toxicity. In: Mosenthin R, Zentec J, Żebrowska T (eds) Biology of growing animals, 1st edn. Elsevier, New York, pp 467–509. https://doi.org/10.1016/S1877-1823(09)70103-1

    Chapter  Google Scholar 

  2. Fantuz F, Ferraro S, Todini L, Mariani P, Piloni R, Salimei E (2013) Essential trace elements in milk and blood serum of lactating donkeys as affected by lactation stage and dietary supplementation with trace elements. Animal 7(11):1893–1899. https://doi.org/10.1017/S175173111300133X

    Article  CAS  PubMed  Google Scholar 

  3. Pereira PC (2014) Milk nutritional composition and its role in human health. Nutrition 30(6):619–627. https://doi.org/10.1016/j.nut.2013.10.011

    Article  CAS  PubMed  Google Scholar 

  4. Prado EL, Dewey KG (2014) Nutrition and brain development in early life. Nutr Rev 72(4):267–284. https://doi.org/10.1111/nure.12102

    Article  PubMed  Google Scholar 

  5. Sobczak M, Jabłoński E (2007) Mineral elements in diet of pregnant and breast-feeding women. Part I. Macro minerals: calcium, magnesium, phosphorus, sodium, potassium, chloride. Przegl Lek 64(3):165–169

    PubMed  Google Scholar 

  6. Sobczak M, Jabłoński E (2007) Mineral elements in diet of pregnant and breast-feeding women. Part II. Micro minerals: iron, zinc, copper, selenium, iodine, fluorine, manganese, molybdenium, chromium. Przegl Lek 64:170–174

    PubMed  Google Scholar 

  7. Paolisso G, Barbagallo M (1997) Hypertension, diabetes mellitus, and insulin resistance: the role of intracellular magnesium. Am J Hypertens 10(3):346–355. https://doi.org/10.1016/S0895-7061(96)00342-1

    Article  CAS  PubMed  Google Scholar 

  8. Williams RJ (1998) Calcium: outside/inside homeostasis and signalling. Biochim Biophys Acta 1448(2):153–165. https://doi.org/10.1016/S0167-4889(98)00139-6

    Article  CAS  PubMed  Google Scholar 

  9. Bennett MR (1999) The concept of a calcium sensor in transmitter release. Prog Neurobiol 59(3):243–277. https://doi.org/10.1016/S0301-0082(99)00004-0

    Article  CAS  PubMed  Google Scholar 

  10. Laroche M (2001) Phosphate, the renal tubule, and the musculoskeletal system. Joint Bone Spine 68(3):211–215. https://doi.org/10.1016/S1297-319X(01)00274-3

    Article  CAS  PubMed  Google Scholar 

  11. Burjonrappa SC, Miller M (2012) Role of trace elements in parenteral nutrition support of the surgical neonate. J Pediatr Surg 47(4):760–771. https://doi.org/10.1016/j.jpedsurg.2012.01.015

    Article  PubMed  Google Scholar 

  12. Tatara MR (2016) Physiological function of magnesium in maintenance of optimal health status in animals. In: Maj-Żurawska M, Pyrzyńska T (eds) Magnesium. Element of life, 1st edn. Wydawnictwo MALAMUT, Warsaw, pp 229–248

    Google Scholar 

  13. Lieu PT, Heiskala M, Peterson PA, Yang Y (2001) The roles of iron in health and disease. Mol Asp Med 22(1-2):1–87. https://doi.org/10.1016/S0098-2997(00)00006-6

    Article  CAS  Google Scholar 

  14. Aschner JL, Aschner M (2005) Nutritional aspects of manganese homeostasis. Mol Asp Med 26(4-5):353–362. https://doi.org/10.1016/j.mam.2005.07.003

    Article  CAS  Google Scholar 

  15. Jeejeebhoy KN, Chu RC, Marliss EB, Greenberg GR, Bruce-Robertson A (1977) Chromium deficiency, glucose intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-term total parenteral nutrition. Am J Clin Nutr 30(4):531–538

    Article  CAS  PubMed  Google Scholar 

  16. Abraham AS, Brooks BA, Eylath U (1992) The effects of chromium supplementation on serum glucose and lipids in patients with and without non-insulin-dependent diabetes. Metabolism 41(7):768–771. https://doi.org/10.1016/0026-0495(92)90318-5

    Article  CAS  PubMed  Google Scholar 

  17. Tomza-Marciniak A, Pilarczyk B, Bakowska M, Ligocki M, Gaik M (2012) Lead, cadmium and other metals in serum of pet dogs from an urban area of NW Poland. Biol Trace Elem Res 149(3):345–351. https://doi.org/10.1007/s12011-012-9433-6

    Article  CAS  PubMed  Google Scholar 

  18. Tymczyna B, Tatara MR, Krupski W, Tymczyna-Sobotka M, Łuszczewska-Sierakowska I, Bachanek T (2012) Relationships between biochemical bone metabolism indices and morphometric, densitometric and mechanical properties of mandible in 6-month-old pigs. Ann Agric Environ Med 19(3):535–539

    PubMed  Google Scholar 

  19. Szabelska A, Tatara MR, Krupski W (2017) Morphological, densitometric and mechanical properties of mandible in 5-month-old Polish Merino sheep. BMC Vet Res 13(1):12. https://doi.org/10.1186/s12917-016-0921-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Szabelska A, Tatara MR, Krupski W (2017) Interrelationships between bone metabolism markers and deciduous teeth and mandible properties in Polish Merino sheep. J Hard Tissue Biol 26(3):249–256. https://doi.org/10.2485/jhtb.26.249

    Article  CAS  Google Scholar 

  21. Piotrowska A, Szymeczko R, Ozgo M, Bogusławska-Tryk M, Burlikowska K (2008) Morphological and mineral characteristics of peripheral blood in female polar fox in relation to age. Folia Biol (Kraków) 56(3):263–267. https://doi.org/10.3409/fb.56_3-4.263-267

    Article  CAS  Google Scholar 

  22. Benn DM, McKeown DB, Lumsden JH (1986) Hematology and biochemistry reference values for the ranch fox. Can J Vet Res 50(1):54–58

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mainka SA (1988) Hematology and serum biochemistry of captive swift foxes (Vulpes velox). J Wildl Dis 24(1):71–74. https://doi.org/10.7589/0090-3558-24.1.71

    Article  CAS  PubMed  Google Scholar 

  24. Rubio AV, Hidalgo-Hermoso E, Bonacic C (2014) Hematology and serum biochemistry values of Culpeo foxes (Lycalopex culpaeus) from central Chile. J Zoo Wildl Med 45(3):589–593. https://doi.org/10.1638/2013-0280R2.1

    Article  PubMed  Google Scholar 

  25. Winnicka A (2004) Reference values of the basic laboratory examinations in veterinary medicine. Wydawnictwo SGGW, Warsaw

    Google Scholar 

  26. Cybulski W, Jarosz L, Chałabis-Mazurek A, Jakubczak A, Kostro K, Kursa K (2009) Contents of zinc, copper, chromium and manganese in silver foxes according to their age and mineral supplementation. Pol J Vet Sci 12(3):339–345

    CAS  PubMed  Google Scholar 

  27. Gudmundsson TV, Woodhouse NJ (1971) Regulation of plasma calcium in man: the influence of parathyroid hormone and calcitonin. Hormones 2(1):26–39

    CAS  PubMed  Google Scholar 

  28. Wendelaar Bonga SE, Pang PK (1991) Control of calcium regulating hormones in the vertebrates: parathyroid hormone, calcitonin, prolactin, and stanniocalcin. Int Rev Cytol 128:139–213. https://doi.org/10.1016/S0074-7696(08)60499-4

    Article  CAS  PubMed  Google Scholar 

  29. Underwood EJ, Suttle NF (1999) Manganese. In: Underwood EJ, Suttle NF (eds) The mineral nutrition of livestock, 3rd edn. CABI Publishing, Oxon, pp 397–420. https://doi.org/10.1079/9780851991283.0397

    Chapter  Google Scholar 

  30. Hodgkinson A, Marshall DH, Nordin BE (1979) Vitamin D and magnesium absorption in man. Clin Sci 57(1):121–123. https://doi.org/10.1042/cs0570121

    Article  CAS  Google Scholar 

  31. Krejs GJ, Nicar MJ, Zerwekh JE, Norman DA, Kane MG, Pak CY (1983) Effect of 1,25-dihydroxyvitamin D3 on calcium and magnesium absorption in the healthy human jejunum and ileum. Am J Med 75(6):973–976. https://doi.org/10.1016/0002-9343(83)90877-X

    Article  CAS  PubMed  Google Scholar 

  32. Hardwick LL, Jones MR, Brautbar N, Lee DB (1991) Magnesium absorption: mechanisms and the influence of vitamin D, calcium and phosphate. J Nutr 121(1):13–23

    Article  CAS  PubMed  Google Scholar 

  33. Razzaque MS (2009) The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis. Nat Rev Endocrinol 5(11):611–619. https://doi.org/10.1038/nrendo.2009.196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fleet JC (2017) The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol Cell Endocrinol 453:36–45. https://doi.org/10.1016/j.mce.2017.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barceloux DG (1999) Cobalt. J Toxicol Clin Toxicol 37(2):201–206. https://doi.org/10.1081/CLT-100102420

    Article  CAS  PubMed  Google Scholar 

  36. Goullé JP, Mahieu L, Castermant J, Neveu N, Bonneau L, Lainé G, Bouige D, Lacroix C (2005) Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair. Reference values. Forensic Sci Int 153(1):39–44. https://doi.org/10.1016/j.forsciint.2005.04.020

    Article  CAS  PubMed  Google Scholar 

  37. Binkowski ŁJ, Merta D, Przystupińska A, Sołtysiak Z, Pacoń J, Stawarz R (2016) Levels of metals in kidney, liver and muscle tissue and their relation to the occurrence of parasites in the red fox in the Lower Silesian Forest in Europe. Chemosphere 149:161–167. https://doi.org/10.1016/j.chemosphere.2016.01.099

    Article  CAS  PubMed  Google Scholar 

  38. Lanocha N, Kalisinska E, Kosik-Bogacka DI, Budis H, Noga-Deren K (2012) Trace metals and micronutrients in bone tissues of the red fox Vulpes vulpes (L., 1758). Acta Theriol 57(3):233–244. https://doi.org/10.1007/s13364-012-0073-1

    Article  Google Scholar 

  39. Budis H, Kalisinska E, Lanocha N, Kosik-Bogacka DI (2013) The concentration of manganese, iron and strontium in bone of red fox Vulpes vulpes (L. 1758). Biol Trace Elem Res 155(3):361–369. https://doi.org/10.1007/s12011-013-9809-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Prestrud P, Norheim G, Sivertsen T, Daae HL (1994) Levels of toxic and essential elements in arctic fox in Svalbard. Polar Biol 14:155–159

    Article  Google Scholar 

  41. Hoekstra PF, Braune BM, Elkin B, Armstrong FA, Muir DC (2003) Concentrations of selected essential and non-essential elements in arctic fox (Alopex lagopus) and wolverines (Gulo gulo) from the Canadian Arctic. Sci Total Environ 309(1-3):81–92. https://doi.org/10.1016/S0048-9697(02)00684-8

    Article  CAS  PubMed  Google Scholar 

  42. Massányi P, Trandzik J, Nad P, Skalická M, Koréneková B, Lukac N, Fabis M, Toman R (2005) Seminal concentration of trace elements in fox and relationships to spermatozoa quality. J Environ Sci Health A Tox Hazard Subst Environ Eng 40(5):1097–1105. https://doi.org/10.1081/ESE-200056166

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin R. Tatara.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national and institutional guidelines for the care and use of animals were followed. The study protocol was approved by the Local Ethics Committee on Animal Experimentation of the University of Life Sciences in Lublin, Poland—permission number 20/2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tatara, M.R., Łuszczewska-Sierakowska, I. & Krupski, W. Serum Concentration of Macro-, Micro-, and Trace Elements in Silver Fox (Vulpes vulpes) and Their Interrelationships with Morphometric, Densitometric, and Mechanical Properties of the Mandible. Biol Trace Elem Res 185, 98–105 (2018). https://doi.org/10.1007/s12011-017-1221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1221-x

Keywords