Skip to main content
Log in

Total Mercury Determination in Muscle and Liver Tissue Samples from Brazilian Amazon Fish Using Slurry Sampling

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This paper presents a slurry sampling method for total mercury determination by graphite furnace atomic absorption spectrometry (GFAAS) in tissue of fish from the Amazon. The tissue samples were lyophilized and macerated, and then the slurry samples were prepared by putting 20 mg of tissue, added to a solution containing Triton X-100, Suprapur HNO3, and zirconium nitrate directly in sampling vials of a spectrometer. Mercury standard solutions were prepared under the same conditions as the slurry samples. The slurry samples and the mercury standard solutions were sonicated for 20 s. Twenty microliters of slurry samples were injected into the graphite tube, which contained an internal wall lined with tungsten carbide. Under these conditions, it was possible to thermally stabilize the mercury up to an atomization temperature of 1700 °C. The method was validated by mercury determination in reference materials DORM-4 and DOLT-4. The LOD and LOQ were 0.014 and 0.045 mg kg−1, respectively, and recovery percentages in relation to the concentration values were certified in the order of 98%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Moraes PM, Santos FA, Padilha CCF, Vieira JCS, Zara LF, de M. Padilha P (2012) A preliminary and qualitative metallomics study of mercury in the muscle of fish from Amazonas, Brazil. Biol Trace Elem Res 150(1-3):195–199. https://doi.org/10.1007/s12011-012-9502-x

    Article  CAS  PubMed  Google Scholar 

  2. Braga CP, Bittarello a C, Padilha CCF et al (2015) Mercury fractionation in dourada (Brachyplatystoma rousseauxii) of the Madeira River in Brazil using metalloproteomic strategies. Talanta 132:239–244. https://doi.org/10.1016/j.talanta.2014.09.021

    Article  CAS  PubMed  Google Scholar 

  3. Vieira JCS, Cavecci B, Queiroz JV, Braga CP, Padilha CCF, Leite AL, Figueiredo WS, Buzalaf MAR, Zara LF, Padilha PM (2015) Determination of the mercury fraction linked to protein of muscle and liver tissue of Tucunaré (Cichla spp.) from the Amazon region of Brazil. Arch Environ Contam Toxicol 69(4):422–430. https://doi.org/10.1007/s00244-015-0160-9

    Article  CAS  PubMed  Google Scholar 

  4. Vieira JCS, Braga CP, Oliveira G et al (2017) Identification of protein biomarkers of mercury toxicity in fish. Environ Chem Lett. https://doi.org/10.1007/s10311-017-0644-0

    Article  CAS  Google Scholar 

  5. Cavalcante J, Vieira S, Braga CP, et al (2017) Mercury exposure: protein biomarkers of mercury exposure in Jaraqui fish from the Amazon region. Biol Trace Elem Res. https://doi.org/10.1007/s12011-017-1129-5

    Article  Google Scholar 

  6. Moraes PM, Zamolin AP, Vargas AP, Golombieski RM, Loreto EL, Merritt TJS, Franco JL, Posser T (2012) Effects of Hg(II) exposure on MAPK phosphorylation and antioxidant system in D. melanogaster M. Environ Toxicol 29:621–630. https://doi.org/10.1002/tox.21788

    Article  CAS  Google Scholar 

  7. Bełdowska M, Falkowska L (2016) Mercury in marine fish, mammals, seabirds, and human hair in the coastal zone of the southern Baltic. Water Air Soil Pollut 227(2):52. https://doi.org/10.1007/s11270-015-2735-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Walters DM, Rosi-Marshall E, Kennedy TA, Cross WF, Baxter CV (2015) Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA. Environ Toxicol Chem SETAC 34(10):2385–2394. https://doi.org/10.1002/etc.3077

    Article  CAS  Google Scholar 

  9. Borrell A, Tornero V, Bhattacharjee D, Aguilar A (2015) Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh). Sci Total Environ 545–546:414–423. https://doi.org/10.1016/j.scitotenv.2015.12.046

    Article  CAS  PubMed  Google Scholar 

  10. Amoli JS, Barin A, Ebrahimi-Rad M, Sadighara P (2011) Cell damage through pentose phosphate pathway in fetus fibroblast cells exposed to methyl mercury. J Appl Toxicol 31(7):685–689. https://doi.org/10.1002/jat.1628

    Article  CAS  PubMed  Google Scholar 

  11. Belyaeva EA, Korotkov SM, Saris N-E (2011) In vitro modulation of heavy metal-induced rat liver mitochondria dysfunction: a comparison of copper and mercury with cadmium. J Trace Elem Med Biol 25(Suppl 1):S63–S73. https://doi.org/10.1016/j.jtemb.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  12. Silva F, Padilha C, Pezzato L, Barros M, Padilha P (2006) Determination of chromium by GFAAS in slurries of fish feces to estimate the apparent digestibility of nutrients in feed used in pisciculture. Talanta 69(4):1025–1030. https://doi.org/10.1016/j.talanta.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  13. Loureiro VR, Saleh MAD, Moraes PM, Neves RCF, Silva FA, Padilha CCF, Padilha PM (2007) Manganese determination by GFAAS in feces and fish feed slurries. J Braz Chem Soc 18(6):1235–1241. https://doi.org/10.1590/S0103-50532007000600019

    Article  CAS  Google Scholar 

  14. Silva FA, Neves RCF, Quintero-Pinto LG, Padilha CCF, Jorge SMA, Barros MM, Pezzato LE, Padilha PM (2007) Determination of selenium by GFAAS in slurries of fish feces to estimate the bioavailability of this micronutrient in feed used in pisciculture. Chemosphere 68(8):1542–1547. https://doi.org/10.1016/j.chemosphere.2007.03.003

    Article  CAS  PubMed  Google Scholar 

  15. Schalm OW, Oscar W, Jain NC, Nemi C (1986) Schalm’s veterinary hematology, 4th edn. Lea & Febiger, Philadelphia

    Google Scholar 

  16. Moraes PM, Santos FA, Cavecci B, Padilha CCF, Vieira JCS, Roldan PS, Padilha PM (2013) GFAAS determination of mercury in muscle samples of fish from Amazon, Brazil. Food Chem 141(3):2614–2617. https://doi.org/10.1016/j.foodchem.2013.05.008

    Article  CAS  PubMed  Google Scholar 

  17. Currie RJW (1999) Ascites in poultry: recent investigations. Avian Pathol 28(4):313–326. https://doi.org/10.1080/03079459994560

    Article  CAS  PubMed  Google Scholar 

  18. FAO/WHO (2004) Human energy requirements. FAO Food and nutrition technical report series 1 0:6

  19. Horwitz W, Albert R (1997) The concept of uncertainty as applied to chemical measurements. Analyst 122(6):615–617. https://doi.org/10.1039/a703178e

    Article  CAS  PubMed  Google Scholar 

  20. Bermejo-Barrera P, Moreda-Piñeiro J, Moreda-Piñeiro A, Bermejo-Barrera A (1994) Palladium as a chemical modifier for the determination of mercury in marine sediment slurries by electrothermal atomization atomic absorption spectrometry. Anal Chim Acta 296(2):181–193. https://doi.org/10.1016/0003-2670(94)80262-9

    Article  CAS  Google Scholar 

  21. Bermejo-Barrera P, Verdura-Constenla EM, Moreda-Piñeiro A, Bermejo-Barrera A (1999) Rapid acid leaching and slurry sampling procedures for the determination of methyl-mercury and total mercury in human hair by electrothermal atomic absorption spectrometry. Anal Chim Acta 398(2-3):263–272. https://doi.org/10.1016/S0003-2670(99)00453-5

    Article  CAS  Google Scholar 

  22. Moreda-Piñeiro J, López-Mahía P, Muniategui-Lorenzo S, Fernández-Fernández E, Prada-Rodríguez D (2002) Direct mercury determination in aqueous slurries of environmental and biological samples by cold vapour generation–electrothermal atomic absorption spectrometry. Anal Chim Acta 460(1):111–122. https://doi.org/10.1016/S0003-2670(02)00137-X

    Article  Google Scholar 

  23. Zhang Y, Adeloju SB (2012) Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry. Anal Chim Acta 721:22–27. https://doi.org/10.1016/j.aca.2012.01.038

    Article  CAS  PubMed  Google Scholar 

  24. Gallignani M, Bahsas H, Brunetto MR, Burguera M, Burguera JL, Petit de Peña Y (1998) A time-based flow injection-cold vapor-atomic absorption spectrometry system with on-line microwave sample pre-treatment for the determination of inorganic and total mercury in urine. Anal Chim Acta 369(1-2):57–67. https://doi.org/10.1016/S0003-2670(98)00217-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian research funding agencies FAPESP (Processes: 2010/51332-5 and 2013/21297-1) and ANEEL/ESBR- P&D: 6631-0001/2012/Contract Jirau 004/201 for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Cavalcante Souza Vieira.

Ethics declarations

All the work in this paper that involved animal experimentation was approved by the Ethics Committee on the Use of Animals (CEUA) of the Faculty of Veterinary Medicine and Zootechnics (FMVZ) of the São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, Brazil, under the number of protocol 110/2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Queiroz, J.V., Vieira, J.C.S., da Cunha Bataglioli, I. et al. Total Mercury Determination in Muscle and Liver Tissue Samples from Brazilian Amazon Fish Using Slurry Sampling. Biol Trace Elem Res 184, 517–522 (2018). https://doi.org/10.1007/s12011-017-1212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1212-y

Keywords

Navigation