Skip to main content
Log in

The Effects of Magnesium and Zinc Co-Supplementation on Biomarkers of Inflammation and Oxidative Stress, and Gene Expression Related to Inflammation in Polycystic Ovary Syndrome: a Randomized Controlled Clinical Trial

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

28 February 2020 The Editors-in-Chief are currently investigating this article [Afshar Ebrahimi, F., Foroozanfard, F., Aghadavod, E. et al. The Effects of Magnesium and Zinc Co-Supplementation on Biomarkers of Inflammation and Oxidative Stress, and Gene Expression Related to Inflammation in Polycystic Ovary Syndrome: a Randomized Controlled Clinical Trial. Biol Trace Elem Res 184, 300–307 (2018). https://doi.org/10.1007/s12011-017-1198-5] as concerns have been raised about integrity of the clinical trial reported here. There is also an ongoing investigation by the Iranian National Committee for Ethics in Biomedical Researches. Further editorial action will be taken as appropriate once the investigation into the concerns is complete and all parties have been given an opportunity to respond in full.

Abstract

Magnesium and zinc are known to exert multiple beneficial effects including anti-inflammatory and antioxidant actions. To our knowledge, data on the effects of magnesium and zinc co-supplementation on biomarkers of inflammation and oxidative stress and gene expression related to inflammation in subjects of polycystic ovary syndrome (PCOS) are scarce. This study was conducted to evaluate the effects of magnesium and zinc co-supplementation on biomarkers of inflammation and oxidative stress and gene expression related to inflammation in subjects with PCOS. This randomized double-blind, placebo-controlled trial was conducted among 60 subjects with PCOS diagnosed according to the Rotterdam criteria, aged 18–40 years old. Participants were randomly assigned into two groups to take either 250 mg of magnesium oxide plus 220 mg of zinc sulfate (containing 50 mg zinc) supplements (n = 30) or placebo (n = 30) twice a day for 12 weeks. Biomarkers of inflammation and oxidative stress were assessed at baseline and at end of treatment. Gene expression related to inflammatory cytokines was assessed in peripheral blood mononuclear cells (PBMCs) of PCOS women with RT-PCR method. After the 12-week intervention, compared with the placebo, magnesium and zinc co-supplementation significantly decreased serum high-sensitivity C-reactive protein (hs-CRP) (− 1.6 ± 2.4 vs. + 0.1 ± 0.7 mg/L, P = 0.001) and protein carbonyl (PCO) (− 0.14 ± 0.28 vs. + 0.02 ± 0.07 mmol/mg protein, P = 0.002) and significantly increased plasma total antioxidant capacity (TAC) levels (+ 60.7 ± 69.4 vs. − 1.5 ± 141.5 mmol/L, P = 0.03). Results of RT-PCR demonstrated that compared with the placebo, magnesium and zinc co-supplementation downregulated gene expression of interleukin-1 (IL-1) (P = 0.007) and tumor necrosis factor alpha (TNF-α) (P = 0.03) in PBMCs of subjects with PCOS. Overall, magnesium and zinc co-supplementation, compared with the placebo, for 12 weeks among PCOS women had beneficial effects on serum hs-CRP, plasma PCO, TAC, and gene expression of IL-1 and TNF-α. Clinical trial registration number: http://www.irct.ir: IRCT201706075623N121.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 28 February 2020

    The Editors-in-Chief are currently investigating this article [Afshar Ebrahimi, F., Foroozanfard, F., Aghadavod, E. et al. The Effects of Magnesium and Zinc Co-Supplementation on Biomarkers of Inflammation and Oxidative Stress, and Gene Expression Related to Inflammation in Polycystic Ovary Syndrome: a Randomized Controlled Clinical Trial. Biol Trace Elem Res 184, 300–307 (2018). https://doi.org/10.1007/s12011-017-1198-5] as concerns have been raised about integrity of the clinical trial reported here. There is also an ongoing investigation by the Iranian National Committee for Ethics in Biomedical Researches. Further editorial action will be taken as appropriate once the investigation into the concerns is complete and all parties have been given an opportunity to respond in full.

References

  1. Ullah A, Jahan S, Razak S, Pirzada M, Ullah H, Almajwal A, Rauf N, Afsar T (2017) Protective effects of GABA against metabolic and reproductive disturbances in letrozole induced polycystic ovarian syndrome in rats. J Ovarian Res 10(1):62. https://doi.org/10.1186/s13048-017-0359-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Churchill SJ, Wang ET, Pisarska MD (2015) Metabolic consequences of polycystic ovary syndrome. Minerva Ginecol 67(6):545–555

    PubMed  Google Scholar 

  3. Gonzalez F, Rote NS, Minium J, Kirwan JP (2006) Reactive oxygen species-induced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. J Clin Endocrinol Metab 91(1):336–340. https://doi.org/10.1210/jc.2005-1696

    Article  CAS  PubMed  Google Scholar 

  4. Victor VM, Rocha M, Banuls C, Sanchez-Serrano M, Sola E, Gomez M, Hernandez-Mijares A (2009) Mitochondrial complex I impairment in leukocytes from polycystic ovary syndrome patients with insulin resistance. J Clin Endocrinol Metab 94(9):3505–3512. https://doi.org/10.1210/jc.2009-0466

    Article  CAS  PubMed  Google Scholar 

  5. Gonzalez F, Rote NS, Minium J, Kirwan JP (2006) Increased activation of nuclear factor kappaB triggers inflammation and insulin resistance in polycystic ovary syndrome. J Clin Endocrinol Metab 91(4):1508–1512. https://doi.org/10.1210/jc.2005-2327

    Article  CAS  PubMed  Google Scholar 

  6. Gonzalez F, Rote NS, Minium J, Kirwan JP (2006) In vitro evidence that hyperglycemia stimulates tumor necrosis factor-alpha release in obese women with polycystic ovary syndrome. J Endocrinol 188(3):521–529. https://doi.org/10.1677/joe.1.06579

    Article  CAS  PubMed  Google Scholar 

  7. Foroozanfard F, Jamilian M, Bahmani F, Talaee R, Talaee N, Hashemi T, Nasri K, Asemi Z, Esmaillzadeh A (2015) Calcium plus vitamin D supplementation influences biomarkers of inflammation and oxidative stress in overweight and vitamin D-deficient women with polycystic ovary syndrome: a randomized double-blind placebo-controlled clinical trial. Clin Endocrinol 83(6):888–894. https://doi.org/10.1111/cen.12840

    Article  CAS  Google Scholar 

  8. Maktabi M, Jamilian M, Asemi Z (2017) Magnesium-zinc-calcium-vitamin D co-supplementation improves hormonal profiles, biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res. https://doi.org/10.1007/s12011-017-1085-0

    Article  PubMed  Google Scholar 

  9. Tabesh M, Azadbakht L, Faghihimani E, Esmaillzadeh A (2014) Calcium-vitamin D cosupplementation influences circulating inflammatory biomarkers and adipocytokines in vitamin D-insufficient diabetics: a randomized controlled clinical trial. J Clin Endocrinol Metab 99(12):E2485–E2493. https://doi.org/10.1210/jc.2014-1977

    Article  CAS  PubMed  Google Scholar 

  10. Moslehi N, Vafa M, Rahimi-Foroushani A, Golestan B (2012) Effects of oral magnesium supplementation on inflammatory markers in middle-aged overweight women. J Res Med Sci 17(7):607–614

    PubMed  PubMed Central  Google Scholar 

  11. Dias PC, Sena-Evangelista KC, Paiva MS, Ferreira DQ, Ururahy MA, Rezende AA, Abdalla DS, Pedrosa LF (2014) The beneficial effects of rosuvastatin are independent of zinc supplementation in patients with atherosclerosis. J Trace Elem Med Biol 28(2):194–199. https://doi.org/10.1016/j.jtemb.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  12. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 81(1):19–25. https://doi.org/10.1016/j.fertnstert.2003.10.004

    Article  Google Scholar 

  13. Tatsch E, Bochi GV, Pereira Rda S, Kober H, Agertt VA, de Campos MM, Gomes P, Duarte MM, Moresco RN (2011) A simple and inexpensive automated technique for measurement of serum nitrite/nitrate. Clin Biochem 44(4):348–350. https://doi.org/10.1016/j.clinbiochem.2010.12.011

    Article  CAS  PubMed  Google Scholar 

  14. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  15. Beutler E, Gelbart T (1985) Plasma glutathione in health and in patients with malignant disease. J Lab Clin Med 105(5):581–584

    CAS  PubMed  Google Scholar 

  16. Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9(6):515–540. https://doi.org/10.1016/0891-5849(90)90131-2

    Article  CAS  PubMed  Google Scholar 

  17. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478. https://doi.org/10.1016/0076-6879(90)86141-H

    Article  CAS  PubMed  Google Scholar 

  18. Gmelig-Meyling F, Waldmann TA (1980) Separation of human blood monocytes and lymphocytes on a continuous Percoll gradient. J Immunol Methods 33(1):1–9. https://doi.org/10.1016/0022-1759(80)90077-0

    Article  CAS  PubMed  Google Scholar 

  19. Jamilian M, Foroozanfard F, Bahmani F, Talaee R, Monavari M, Asemi Z (2016) Effects of zinc supplementation on endocrine outcomes in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Biol Trace Elem Res 170(2):271–278. https://doi.org/10.1007/s12011-015-0480-7

    Article  CAS  PubMed  Google Scholar 

  20. Asemi Z, Foroozanfard F, Hashemi T, Bahmani F, Jamilian M, Esmaillzadeh A (2015) Calcium plus vitamin D supplementation affects glucose metabolism and lipid concentrations in overweight and obese vitamin D deficient women with polycystic ovary syndrome. Clin Nutr 34(4):586–592. https://doi.org/10.1016/j.clnu.2014.09.015

    Article  CAS  PubMed  Google Scholar 

  21. Simental-Mendia LE, Sahebkar A, Rodriguez-Moran M, Zambrano-Galvan G, Guerrero-Romero F (2017) Effect of magnesium supplementation on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Curr Pharm Des 23(999):1. https://doi.org/10.2174/1381612823666170525153605

    Article  CAS  Google Scholar 

  22. Bo S, Durazzo M, Guidi S, Carello M, Sacerdote C, Silli B, Rosato R, Cassader M, Gentile L, Pagano G (2006) Dietary magnesium and fiber intakes and inflammatory and metabolic indicators in middle-aged subjects from a population-based cohort. Am J Clin Nutr 84(5):1062–1069

    Article  CAS  PubMed  Google Scholar 

  23. Song Y, Li TY, van Dam RM, Manson JE, FB H (2007) Magnesium intake and plasma concentrations of markers of systemic inflammation and endothelial dysfunction in women. Am J Clin Nutr 85(4):1068–1074

    Article  CAS  PubMed  Google Scholar 

  24. Almoznino-Sarafian D, Berman S, Mor A, Shteinshnaider M, Gorelik O, Tzur I, Alon I, Modai D, Cohen N (2007) Magnesium and C-reactive protein in heart failure: an anti-inflammatory effect of magnesium administration? Eur J Nutr 46(4):230–237. https://doi.org/10.1007/s00394-007-0655-x

    Article  CAS  PubMed  Google Scholar 

  25. Roman A, Desai N, Rochelson B, Gupta M, Solanki M, Xue X, Chatterjee PK, Metz CN (2013) Maternal magnesium supplementation reduces intrauterine growth restriction and suppresses inflammation in a rat model. Am J Obstet Gynecol 208(383):e381–e387

    Google Scholar 

  26. Banupriya N, Vishnu Bhat B, Benet BD, Sridhar MG, Parija SC (2017) Efficacy of zinc supplementation on serum calprotectin, inflammatory cytokines and outcome in neonatal sepsis—a randomized controlled trial. J Matern Fetal Neonatal Med 30(13):1627–1631. https://doi.org/10.1080/14767058.2016.1220524

    Article  CAS  PubMed  Google Scholar 

  27. Kim J, Ahn J (2014) Effect of zinc supplementation on inflammatory markers and adipokines in young obese women. Biol Trace Elem Res 157(2):101–106. https://doi.org/10.1007/s12011-013-9885-3

    Article  CAS  PubMed  Google Scholar 

  28. Duleba AJ, Dokras A (2012) Is PCOS an inflammatory process? Fertil Steril 97(1):7–12. https://doi.org/10.1016/j.fertnstert.2011.11.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jialal I, Devaraj S, Venugopal SK (2004) C-reactive protein: risk marker or mediator in atherothrombosis? Hypertension 44(1):6–11. https://doi.org/10.1161/01.HYP.0000130484.20501.df

    Article  CAS  PubMed  Google Scholar 

  30. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin Invest 115(5):1111–1119. https://doi.org/10.1172/JCI25102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aneiros E, Philipp S, Lis A, Freichel M, Cavalie A (2005) Modulation of Ca2+ signaling by Na+/Ca2+ exchangers in mast cells. J Immunol 174(1):119–130. https://doi.org/10.4049/jimmunol.174.1.119

    Article  CAS  PubMed  Google Scholar 

  32. De Martin R, Hoeth M, Hofer-Warbinek R, Schmid JA (2000) The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol 20(11):E83–E88. https://doi.org/10.1161/01.ATV.20.11.e83

    Article  PubMed  Google Scholar 

  33. Vongpatanasin W, Peri-Okonny P, Velasco A, Arbique D, Wang Z, Ravikumar P, Adams-Huet B, Moe OW, Pak CYC (2016) Effects of potassium magnesium citrate supplementation on 24-hour ambulatory blood pressure and oxidative stress marker in prehypertensive and hypertensive subjects. Am J Cardiol 118(6):849–853. https://doi.org/10.1016/j.amjcard.2016.06.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yogi A, Callera GE, O’Connor SE, He Y, Correa JW, Tostes RC, Mazur A, Touyz RM (2011) Dysregulation of renal transient receptor potential melastatin 6/7 but not paracellin-1 in aldosterone-induced hypertension and kidney damage in a model of hereditary hypomagnesemia. J Hypertens 29(7):1400–1410. https://doi.org/10.1097/HJH.0b013e32834786d6

    Article  CAS  PubMed  Google Scholar 

  35. Barman S, Srinivasan K (2017) Attenuation of oxidative stress and cardioprotective effects of zinc supplementation in experimental diabetic rats. Br J Nutr 117(03):335–350. https://doi.org/10.1017/S0007114517000174

    Article  CAS  PubMed  Google Scholar 

  36. Soltani N, Nematbakhsh M, Eshraghi-Jazi F, Talebi A, Ashrafi F (2013) Effect of oral administration of magnesium on cisplatin-induced nephrotoxicity in normal and streptozocin-induced diabetic rats. Nephrourol Mon 5(4):884–890. https://doi.org/10.5812/numonthly.11624

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tang QQ, SY S, Fang MY (2014) Zinc supplement modulates oxidative stress and antioxidant values in rats with severe acute pancreatitis. Biol Trace Elem Res 159(1-3):320–324. https://doi.org/10.1007/s12011-014-9971-1

    Article  CAS  PubMed  Google Scholar 

  38. Evans JL, Goldfine ID, Maddux BA, Grodsky GM (2003) Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52(1):1–8. https://doi.org/10.2337/diabetes.52.1.1

    Article  CAS  PubMed  Google Scholar 

  39. Gross M, Steffes M, Jacobs DR Jr, Yu X, Lewis L, Lewis CE, Loria CM (2005) Plasma F2-isoprostanes and coronary artery calcification: the CARDIA study. Clin Chem 51(1):125–131. https://doi.org/10.1373/clinchem.2004.037630

    Article  CAS  PubMed  Google Scholar 

  40. Liu YX, Guo YM, Wang Z (2007) Effect of magnesium on reactive oxygen species production in the thigh muscles of broiler chickens. Br Poult Sci 48(1):84–89. https://doi.org/10.1080/00071660601148187

    Article  CAS  PubMed  Google Scholar 

  41. Boujelben M, Ghorbel F, Vincent C, Makni-Ayadi F, Guermazi F, Croute F, El-Feki A (2006) Lipid peroxidation and HSP72/73 expression in rat following cadmium chloride administration: interactions of magnesium supplementation. Exp Toxicol Pathol 57(5-6):437–443. https://doi.org/10.1016/j.etp.2006.02.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by Elite Researcher Grant Committee under award number (958632) from the National Institutes for Medical Research Development (NIMAD), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

ZA contributed in conception, design, statistical analysis, and drafting of the manuscript. FA-E, FF, EA, and FB contributed in data collection and manuscript drafting. BB and HJ contributed in the revised version. All authors approved the final version for submission. ZA supervised the study.

Corresponding author

Correspondence to Zatollah Asemi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afshar Ebrahimi, F., Foroozanfard, F., Aghadavod, E. et al. The Effects of Magnesium and Zinc Co-Supplementation on Biomarkers of Inflammation and Oxidative Stress, and Gene Expression Related to Inflammation in Polycystic Ovary Syndrome: a Randomized Controlled Clinical Trial. Biol Trace Elem Res 184, 300–307 (2018). https://doi.org/10.1007/s12011-017-1198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1198-5

Keywords

Navigation