Skip to main content
Log in

Effect of Cys, GSH, and pH on Mercury Release from Tibetan Medicine Zuotai, β-HgS, and α-HgS in Artificial Gastrointestinal Juices

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zuotai, also named as “gTso thal”, a known Tibetan medicinal mixture containing insoluble cubic crystal mercuric sulfide (β-HgS), has been used to treat diseases with long history. The mercury release ratio from Zuotai in gastrointestinal environment is one determinant factor for its bioavailability and biological effect. However, the information is still scarce now. Therefore, the study was designed to investigate the effect of sulfhydryl biomolecules [l-cysteine (Cys) and glutathione (GSH)] and pH on mercury dissociation from Zuotai, β-HgS, and hexagonal crystal mercuric sulfide (α-HgS) in artificial gastrointestinal juices or pure water with a 1:100 solid-liquid ratio. And, the digestion and peristalsis of gastrointestinal tract were simulated in vitro. The results showed the following trend for the mercury release ratio of Zuotai, artificial gastric juice > artificial intestinal juice > pure water, whereas the trend for β-HgS and α-HgS was as follows, artificial intestinal fluid > artificial gastric fluid > pure water. The mercury release ratios of Zuotai, β-HgS, and α-HgS significantly increased in artificial intestinal juice containing l-Cys or GSH compared to those without sulfhydryl biomolecules in the juice. However, in contrast to the results observed for β-HgS and α-HgS, the mercury release ratio of Zuotai was reduced remarkably in pure water and artificial gastric juice with Cys or GSH. And, we found that strong acidic or strong alkaline environments promoted the dissociation of mercury from Zuotai, β-HgS, and α-HgS. Taken together, current findings may contribute to other studies regarding clinical safety and bioavailability of the traditional drug Zuotai containing β-HgS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HgS:

Mercuric sulfide

Cys:

l-cysteine

GSH:

Glutathione

LD0 or MTD:

Lethal dose 0% or maximal tolerance dose

LD50 :

Median lethal dose

K sp :

Solubility product constant

References

  1. Chen C, Wu S, Wang Y, Sun X (2012) Recent researches of synthetic mercury sulfide in traditional medicine system. China J Chin Mater Med 37:2968–2970

    CAS  Google Scholar 

  2. Gamaqupei, Tudenggesang, Geqiong (1988) The processing method of mercury medicinal powder (Zuotai). 88107006.8,

  3. Li C, Yang H, Du Y, Xiao Y, Zhandui, Sanglao et al (2016) Chemical species, micromorphology, and XRD fingerprint analysis of Tibetan medicine Zuotai containing mercury. Bioinorg Chem Appl 2016:1–11. https://doi.org/10.1155/2016/7010519

    Article  CAS  Google Scholar 

  4. Wang Z (2010) The reinterpreting of Tibetan medicine essence Zuota. Health World (Academic Edition) 4:84–85

    Google Scholar 

  5. Lanke (1999) Brief review of Tibetan medicine Zuotai. Chin J Ethnomed Ethnopharm 5:86. https://doi.org/10.16041/j.cnki.cn15-1175.1999.s1.084

    Article  Google Scholar 

  6. Goldman LR, Shannon MW (2001) Technical report: mercury in the environment: implications for pediatricians. Pediatrics 108:197–205. https://doi.org/10.1542/peds.108.1.197

    Article  CAS  PubMed  Google Scholar 

  7. Luosang DJ, Gongga LB (2008) The quality control method of a processing product in Tibetan medicine and its new application. 200810093949.5

  8. Suolang (2007) The processing technology of Zuotai. Chin J Ethnomed Ethnopharm 5:40. https://doi.org/10.16041/j.cnki.cn15-1175.2007.05.034

    Article  Google Scholar 

  9. Zeng Y, He S, Liu Y, Wang Z, Zhang Y (2005) Study on the pharmacological effects in central nervous system of Tibetan medicine Zuota. J Sichuan Tradit Chin Med 23:33–34. https://doi.org/10.3969/j.issn.1000-3649.2005.11.017

    Article  Google Scholar 

  10. Jiang EN, Zhang CG, Wang JH, Li ZG, Cheng F, Xue X et al (2009) Study on the pharmacodynamics of Tibetan medicine Zuotai. Lishizhen Med Mater Medic Res 20:3–4

    Google Scholar 

  11. Chen Z, Xianglan P, Li W, Wu K, Lan G, Cui J (2011) The influence on Drosophila life of Tibetan medicine Zuota. Lishizhen Med Mater Medic Res 22:422–423

    Google Scholar 

  12. Li H, Li W-K, Lu Y-F, Wei L-X, Liu J (2016) The Tibetan medicine Zuotai influences clock gene expression in the liver of mice. PeerJ 4:e1632. https://doi.org/10.7717/peerj.1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu T, Shen B, Wang W, Chiren B, Yao G (2013) The proliferation of 239 cell promoted by Tibetan medicine Zuotai through caspase-3. J Med Pharm Chin Minorities 5:47–49

    Google Scholar 

  14. Wang D, Wei L, Du Y, Yang H, Xia Z, Lv P et al (2010) Study on the method of determination of mercury sulfide in Tibetan medicine GTso Thal. Lishizhen Med Mater Medic Res 21:1359–1361

    CAS  Google Scholar 

  15. Xia ZJ, Wei LX, Wang DP, Du YZ, Chen XM, Yang HX (2010) Quality control of traditional Tibetan medicine Zsuotai. J Chin Med Mater 33:688–690

    CAS  Google Scholar 

  16. Zhang B-B, Li W-K, Hou W-Y, Luo Y, Shi J-Z, Li C et al (2017) Zuotai and HgS differ from HgCl2 and methyl mercury in Hg accumulation and toxicity in weanling and aged rats. Toxicol Appl Pharmacol. https://doi.org/10.1016/j.taap.2017.05.021.

    Article  CAS  PubMed  Google Scholar 

  17. Wu Q, Li WK, Zhou ZP, Li YY, Xiong TW, Du YZ et al (2016) The Tibetan medicine Zuotai differs from HgCl2 and MeHg in producing liver injury in mice. Regul Toxicol Pharmacol 78:1–7. https://doi.org/10.1016/j.yrtph.2016.03.017.

    Article  CAS  PubMed  Google Scholar 

  18. Liu J, Lu Y-F, Li W-K, Zhou Z-P, Li Y-Y, Yang X et al (2016) Mercury sulfides are much less nephrotoxic than mercury chloride and methylmercury in mice. Toxicol Lett 262:153–160. https://doi.org/10.1016/j.toxlet.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  19. Xu SF, Wu Q, Zhang BB, Li H, Xu YS, Du YZ et al (2016) Comparison of mercury sulfides with mercury chloride and methylmercury on hepatic P450, phase-2 and transporter gene expression in mice. J Trace Elem Med Biol 37:37–43. https://doi.org/10.1016/j.jtemb.2016.06.006.

    Article  PubMed  Google Scholar 

  20. Dean JA (1999) Lange’s handbook of chemistry, 8 Section: 8.13. 15th ed. McGraw-Hill, New York

  21. Li C, Wang D, Duo J, Duojie L, Chen X, Du Y et al (2014) Study on safety of Tibetan medicine zuotai and preliminary study on clinical safety of its compound dangzuo. China J Chin Mater Medic 39:2573–2582

    Google Scholar 

  22. Zheng Z-Y, Li C, Zhang M, Yang H-X, Geng L-J, Li L-S et al (2015) Dissolution, absorption and bioaccumulation in gastrointestinal tract of mercury in HgS-containing traditional medicines Cinnabar and Zuotai. Zhongguo Zhongyao Zazhi 40:2455–2460. https://doi.org/10.4268/cjcmm20151236

    Article  CAS  PubMed  Google Scholar 

  23. Bridges CC, Zalups RK (2010) Transport of inorganic mercury and methylmercury in target tissues and organs. J Toxicol Environ Health Part B, Crit Rev 13:385–410. https://doi.org/10.1080/10937401003673750

    Article  CAS  Google Scholar 

  24. Zhou X, Zeng K, Wang Q, Yang X, Wang K (2010) In vitro studies on dissolved substance of cinnabar: chemical species and biological properties. J Ethnopharmacol 131:196–202. https://doi.org/10.1016/j.jep.2010.06.018

    Article  CAS  PubMed  Google Scholar 

  25. Zhou X, Wang L, Sun X, Yang X, Chen C, Wang Q et al (2011) Cinnabar is not converted into methylmercury by human intestinal bacteria. J Ethnopharmacol 135:110–115. https://doi.org/10.1016/j.jep.2011.02.032

    Article  CAS  PubMed  Google Scholar 

  26. Mrázek J, Štrosová L, Fliegerová K, Kott T, Kopečný J (2008) Diversity of insect intestinal microflora. Folia Microbiol 53:229–233. https://doi.org/10.1007/s12223-008-0032-z

    Article  CAS  Google Scholar 

  27. Chinese Pharmacopeia Commission (2010) Chinese pharmacopoeia (2010 version). Appendix V C. China Medical Science Press, Beijing

  28. United Nations (2015) Globally harmonized system of classification and labelling of chemicals (GHS) (Rev.6). Chapter 3.1:113–123. 2015. https://doi.org/10.1265/jjh.65.5

    Article  Google Scholar 

  29. Chen X. (2009) The substance composition analysis and the preliminary security research of Tibetan medicine Zuotai. Xi’ning (Master's Thesis)

  30. Jay JA, Morel FMM, Hemond HF (2000) Mercury speciation in the presence of polysulfides. Environ Sci Technol 34:2196–2200. https://doi.org/10.1021/es9911115

    Article  CAS  Google Scholar 

  31. Sharma VK, Moulin A, Millero FJ, De Stefano C (2006) Dissociation constants of protonated cysteine species in seawater media. Mar Chem 99:52–61. https://doi.org/10.1016/j.marchem.2005.02.005

    Article  CAS  Google Scholar 

  32. Jalilehvand F, Leung BO, Izadifard M, Damian E (2006) Mercury(II) cysteine complexes in alkaline aqueous solution. Inorg Chem 45:66–73. https://doi.org/10.1021/ic0508932

    Article  CAS  PubMed  Google Scholar 

  33. Mah V, Jalilehvand F (2008) Mercury(II) complex formation with glutathione in alkaline aqueous solution. J Biol Inorg Chem 13:541–553. https://doi.org/10.1007/s00775-008-0342-2

    Article  CAS  PubMed  Google Scholar 

  34. Li C, Duoji, Zhandui, Xia Z, Du Y, Wei L (2012) Chemical and structural analysis of Nengchi Bajin ashes in refining of Tibetan medicine gTSo thal. China J Chin Mater Medic 37:1952–1957

    CAS  Google Scholar 

  35. Li C, Suolang, Zege, Wang Z, Du Y, Wei L (2011) Chemical and structural analysis of Nengchi Bakuang ashes in refining of Tibetan medicine Zuotai. Chin J Pharm Anal 31:2220–2224

    CAS  Google Scholar 

  36. Dreybrodt W, Lauckner J, Zaihua L, Svensson U, Buhmann D (1996) The kinetics of the reaction CO2 + H2O → H+ + HCO3− as one of the rate limiting steps for the dissolution of calcite in the system H2O-CO2-CaCO3. Geochim Cosmochim Acta 60:3375–3381. https://doi.org/10.1016/0016-7037(96)00181-0.

    Article  CAS  Google Scholar 

  37. Li C (2014) Converted chemical special and transmembrane aborption of mercuric sulfide of traditional Tibetan medicine Zuotai in gastrointestine. Fourth chapter: 49–63. Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi’ning

  38. Liu J, Shi J-Z, Yu L-M, Goyer RA, Waalkes MP (2008) Mercury in traditional medicines: is cinnabar toxicologically similar to common mercurials? Exp Biol Med (Maywood) 233:810–817. https://doi.org/10.3181/0712-MR-336

    Article  CAS  Google Scholar 

  39. Pubic Health England (PHE) (2016) Compendium of chemical hazards: inorganic mercury/elemental mercury toxicological overview. Page: 4. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/531975/Mercury_PHE_TO_080616.pdf. Accessed 4 May 2017

  40. Win KY, Feng S-S (2005) Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26:2713–2722. https://doi.org/10.1016/j.biomaterials.2004.07.050

    Article  CAS  PubMed  Google Scholar 

  41. Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T (2000) Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm 50:147–160. https://doi.org/10.1016/S0939-6411(00)00084-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Yuzhi Du (Professor), Hongxia Yang (PhD), Lujing Geng (PhD), and Hongtao Bi (PhD) of Northwest Institute of Plateau Biology, Chinese Academy of Sciences, are acknowledged for their assistance in measurements and data analysis.

Funding

This work was supported by “The Dawn of West China” 2014 Talent Training Program of Chinese Academy of Sciences (Y529021211), the Science Foundation for Young Scholars of Qinghai Province (2016-ZJ-919Q), the National Natural Science Foundation of China (81374063), and the Development Program of Key Laboratory in Qinghai Province (2017-ZJ-Y08).

Author information

Authors and Affiliations

Authors

Contributions

Zhiyuan Zheng (zhengzhiyuan12@mails.ucas.ac.cn) and Ming Zhang (zhangming13@mails.ucas.ac.cn) performed the main experiments with equal contribution to this work, and are joint first authors. Yuancan Xiao (ycxiao@nwipb.cas.cn) performed auxiliary implementation of experiments. Lixin Wei (lxwei@nwipb.cas.cn) and Cen Li (licen@nwipb.cas.cn) contributed equally to the experiment design and the composition of this manuscript.

Corresponding authors

Correspondence to Lixin Wei or Cen Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Raw data 1: Mercury leaching ratio (μg/g) from Tibetan medicine Zuotai, β-HgS, and α-HgS in pure water and artificial gastrointestinal juices containing Cys (or GSH) or not. https://figshare.com/s/ff2314be1b9ab2ecf3b4

Raw data 2: Leaching ratio (μg/g) of mercury from Tibetan medicine Zuotai, β-HgS, and α-HgS in different pH solutions. https://figshare.com/s/3cab66153bdd9b4a4609

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Zhang, M., Xiao, Y. et al. Effect of Cys, GSH, and pH on Mercury Release from Tibetan Medicine Zuotai, β-HgS, and α-HgS in Artificial Gastrointestinal Juices. Biol Trace Elem Res 184, 536–545 (2018). https://doi.org/10.1007/s12011-017-1185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1185-x

Keywords

Navigation