MRP2 and the Transport Kinetics of Cysteine Conjugates of Inorganic Mercury

  • Cláudia Oliveira
  • Lucy Joshee
  • Christy C. Bridges
Article
  • 38 Downloads

Abstract

Human exposure to mercuric species occurs regularly throughout the world. Mercuric ions may accumulate in target cells and subsequently lead to cellular intoxication and death. Therefore, it is important to have a thorough understanding of how transportable species of mercury are handled by specific membrane transporters. The purpose of the current study was to characterize the transport kinetics of cysteine (Cys)-S-conjugates of inorganic mercury (Cys-S-Hg-S-Cys) at the site of the multidrug resistance-associated transporter 2 (MRP2). In order to estimate the maximum velocity (V max) and Michaelis constant (K m) for the uptake of Cys-S-Hg-S-Cys mediated by MRP2, in vitro studies were carried out using radioactive Cys-S-Hg-S-Cys (5 μM) and inside-out membrane vesicles made from Sf9 cells transfected with MRP2. The V max was estimated to be 74.3 ± 10.1 nmol mg protein−1 30 s−1 while the K m was calculated to be 63.4 ± 27.3 μM. In addition, in vivo studies were utilized to measure the disposition of inorganic mercury (administered dose 0.5 μmol kg−1 in 2 mL normal saline) over time in Wistar and TR¯ (Mrp2-deficient) rats. These studies measured the disposition of mercuric ions in the kidney, liver, and blood. In general, the data suggest that the initial uptake of mercuric conjugates into select target cells is rapid followed by a period of slower uptake and accumulation. Overall, the data indicate that MRP2 transports Cys-S-Hg-S-Cys in a manner that is similar to that of other MRP2 substrates.

Keywords

Mercury Multidrug resistance-associated protein 2 Kidney Transport 

References

  1. 1.
    ATSDR Agency for Toxic Substance and Disease Registry (2008) Toxicological profile for mercury. Centers for Disease Control, Atlanta, GAGoogle Scholar
  2. 2.
    Buchanan S, Anglen J, Turyk M (2015) Methyl mercury exposure in populations at risk: analysis of NHANES 2011–2012. Environ Res 140:56–64.  https://doi.org/10.1016/j.envres.2015.03.005 CrossRefPubMedGoogle Scholar
  3. 3.
    Mortensen ME, Caudill SP, Caldwell KL, Ward CD, Jones RL (2014) Total and methyl mercury in whole blood measured for the first time in the U.S. population: NHANES 2011–2012. Environ Res 134:257–264.  https://doi.org/10.1016/j.envres.2014.07.019 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hirayama K (1975) Transport mechanism of methyl mercury. Intestinal absorption, biliary excretion and distribution of methyl mercury. Kumamoto Med J 28(4):151–163PubMedGoogle Scholar
  5. 5.
    Vazquez M, Calatayud M, Velez D, Devesa V (2013) Intestinal transport of methylmercury and inorganic mercury in various models of Caco-2 and HT29-MTX cells. Toxicology 311(3):147–153.  https://doi.org/10.1016/j.tox.2013.06.002 CrossRefPubMedGoogle Scholar
  6. 6.
    Daniel JW (1972) The biotransformation of organomercury compounds. Biochem J 130(2):64P–65PCrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Norseth T, Clarkson TW (1970) Studies on the biotransformation of 203Hg-labeled methyl mercury chloride in rats. Arch Environ Health 21(6):717–727CrossRefPubMedGoogle Scholar
  8. 8.
    Norseth T, Clarkson TW (1970) Biotransformation of methylmercury salts in the rat studied by specific determination of inorganic mercury. Biochem Pharmacol 19(10):2775–2783CrossRefPubMedGoogle Scholar
  9. 9.
    Omata S, Sato M, Sakimura K, Sugano H (1980) Time-dependent accumulation of inorganic mercury in subcellular fractions of kidney, liver, and brain of rats exposed to methylmercury. Arch Toxicol 44(4):231–241CrossRefPubMedGoogle Scholar
  10. 10.
    Bridges CC, Zalups RK (2017) Mechanisms involved in the transport of mercuric ions in target tissues. Arch Toxicol 91(1):63–81.  https://doi.org/10.1007/s00204-016-1803-y CrossRefPubMedGoogle Scholar
  11. 11.
    Bridges CC, Bauch C, Verrey F, Zalups RK (2004) Mercuric conjugates of cysteine are transported by the amino acid transporter system b(0,+): implications of molecular mimicry. J Am Soc Nephrol 15(3):663–673CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Aslamkhan AG, Han YH, Yang XP, Zalups RK, Pritchard JB (2003) Human renal organic anion transporter 1-dependent uptake and toxicity of mercuric-thiol conjugates in Madin-Darby canine kidney cells. Mol Pharmacol 63(3):590–596CrossRefPubMedGoogle Scholar
  13. 13.
    Bridges CC, Joshee L, Zalups RK (2008) Multidrug resistance proteins and the renal elimination of inorganic mercury mediated by 2,3-dimercaptopropane-1-sulfonic acid and meso-2,3-dimercaptosuccinic acid. J Pharmacol Exp Ther 324(1):383–390CrossRefPubMedGoogle Scholar
  14. 14.
    Bridges CC, Zalups RK, Joshee L (2015) Toxicological significance of renal Bcrp: another potential transporter in the elimination of mercuric ions from proximal tubular cells. Toxicol Appl Pharmacol 285(2):110–117.  https://doi.org/10.1016/j.taap.2015.03.027 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Belanger M, Westin A, Barfuss DW (2001) Some health physics aspects of working with 203Hg in university research. Health Phys 80(2 Suppl):S28–S30PubMedGoogle Scholar
  16. 16.
    Bridges CC, Joshee L, van den Heuvel JJ, Russel FG, Zalups RK (2013) Glutathione status and the renal elimination of inorganic mercury in the Mrp2(−/−) mouse. PLoS One 8(9):e73559.  https://doi.org/10.1371/journal.pone.0073559 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bridges CC, Joshee L, Zalups RK (2008) MRP2 and the DMPS- and DMSA-mediated elimination of mercury in TR(−) and control rats exposed to thiol S-conjugates of inorganic mercury. Toxicol Sci 105(1):211–220CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bridges CC, Joshee L, Zalups RK (2011) MRP2 and the handling of mercuric ions in rats exposed acutely to inorganic and organic species of mercury. Toxicol Appl Pharmacol 251(1):50–58.  https://doi.org/10.1016/j.taap.2010.11.015 CrossRefPubMedGoogle Scholar
  19. 19.
    El-Sheikh AA, van den Heuvel JJ, Koenderink JB, Russel FG (2007) Interaction of nonsteroidal anti-inflammatory drugs with multidrug resistance protein (MRP) 2/ABCC2- and MRP4/ABCC4-mediated methotrexate transport. J Pharmacol Exp Ther 320(1):229–235.  https://doi.org/10.1124/jpet.106.110379 CrossRefPubMedGoogle Scholar
  20. 20.
    Van Aubel RA, Koenderink JB, Peters JG, Van Os CH, Russel FG (1999) Mechanisms and interaction of vinblastine and reduced glutathione transport in membrane vesicles by the rabbit multidrug resistance protein Mrp2 expressed in insect cells. Mol Pharmacol 56(4):714–719PubMedGoogle Scholar
  21. 21.
    Mayer R, Kartenbeck J, Buchler M, Jedlitschky G, Leier I, Keppler D (1995) Expression of the MRP gene-encoded conjugate export pump in liver and its selective absence from the canalicular membrane in transport-deficient mutant hepatocytes. J Cell Biol 131(1):137–150CrossRefPubMedGoogle Scholar
  22. 22.
    Paulusma CC, Bosma PJ, Zaman GJ, Bakker CT, Otter M, Scheffer GL, Scheper RJ, Borst P, Oude Elferink RP (1996) Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science 271(5252):1126–1128CrossRefPubMedGoogle Scholar
  23. 23.
    de Vries MH, Redegeld FA, Koster AS, Noordhoek J, de Haan JG, Oude Elferink RP, Jansen PL (1989) Hepatic, intestinal and renal transport of 1-naphthol-beta-D-glucuronide in mutant rats with hereditary-conjugated hyperbilirubinemia. Naunyn Schmiedeberg's Arch Pharmacol 340(5):588–592CrossRefGoogle Scholar
  24. 24.
    Masereeuw R, Notenboom S, Smeets PH, Wouterse AC, Russel FG (2003) Impaired renal secretion of substrates for the multidrug resistance protein 2 in mutant transport-deficient (TR-) rats. J Am Soc Nephrol 14(11):2741–2749CrossRefPubMedGoogle Scholar
  25. 25.
    Smeets PH, van Aubel RA, Wouterse AC, van den Heuvel JJ, Russel FG (2004) Contribution of multidrug resistance protein 2 (MRP2/ABCC2) to the renal excretion of p-aminohippurate (PAH) and identification of MRP4 (ABCC4) as a novel PAH transporter. J Am Soc Nephrol 15(11):2828–2835CrossRefPubMedGoogle Scholar
  26. 26.
    Lee HB, Blaufox MD (1985) Blood volume in the rat. J Nucl Med 26(1):72–76PubMedGoogle Scholar
  27. 27.
    Aposhian HV, Maiorino RM, Rivera M, Bruce DC, Dart RC, Hurlbut KM, Levine DJ, Zheng W, Fernando Q, Carter D et al (1992) Human studies with the chelating agents, DMPS and DMSA. J Toxicol Clin Toxicol 30(4):505–528CrossRefPubMedGoogle Scholar
  28. 28.
    Zalups RK (2000) Molecular interactions with mercury in the kidney. Pharmacol Rev 52(1):113–143PubMedGoogle Scholar
  29. 29.
    Ishikawa T, Muller M, Klunemann C, Schaub T, Keppler D (1990) ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. J Biol Chem 265(31):19279–19286PubMedGoogle Scholar
  30. 30.
    Leier I, Jedlitschky G, Buchholz U, Center M, Cole SP, Deeley RG, Keppler D (1996) ATP-dependent glutathione disulphide transport mediated by the MRP gene-encoded conjugate export pump. Biochem J 314(Pt 2):433–437CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gerk PM, Li W, Megaraj V, Vore M (2007) Human multidrug resistance protein 2 transports the therapeutic bile salt tauroursodeoxycholate. J Pharmacol Exp Ther 320(2):893–899.  https://doi.org/10.1124/jpet.106.106922 CrossRefPubMedGoogle Scholar
  32. 32.
    Myint K, Li Y, Paxton J, McKeage M (2015) Multidrug resistance-associated protein 2 (MRP2) mediated transport of oxaliplatin-derived platinum in membrane vesicles. PLoS One 10(7):e0130727.  https://doi.org/10.1371/journal.pone.0130727 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 84(21):7735–7738CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Johnson BM, Zhang P, Schuetz JD, Brouwer KL (2006) Characterization of transport protein expression in multidrug resistance-associated protein (Mrp) 2-deficient rats. Drug Metab Dispos 34(4):556–562CrossRefPubMedGoogle Scholar
  35. 35.
    Zalups RK, Joshee L, Bridges CC (2014) Novel Hg2+-induced nephropathy in rats and mice lacking mrp2: evidence of axial heterogeneity in the handling of Hg2+ along the proximal tubule. Toxicol Sci 142(1):250–260.  https://doi.org/10.1093/toxsci/kfu171 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Biomedical SciencesMercer University School of MedicineMaconUSA
  2. 2.Federal University of Santa MariaSanta MariaBrazil

Personalised recommendations