Skip to main content

Advertisement

Log in

Cytoprotective Effects of the Red Marine Alga Chondrus canaliculatus Against Maneb-Induced Hematotoxicity and Bone Oxidative Damages in Adult Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The current study aimed at evaluating the ability of a mineral and antioxidant-rich extract from Chondrus canaliculatus to improve maneb (MB)-induced toxicity in adult rat. The animals were divided into four groups: group 1 used as a control group, group 2 received MB, group 3 received MB + C. canaliculatus extract, and group 4 received only the algal extract. MB, a Mn-containing ethylene-bis-dithiocarbamate fungicide, induced oxidative stress damages, mineral perturbations in the plasma, urine, and bone, and genotoxicity in rats. Hematological analysis revealed in the MB-treated group a disruption in the number of red blood cells, platelets, and white blood cells associated with a striking genotoxicity. Interestingly, a significant increase in malondialdehyde and advanced oxidation protein product levels in erythrocytes and bones were found. On the other hand, an impairment of the antioxidant status in both tissues was occurred. Along, our results revealed that MB injection caused a striking drop and disruption in bone’s mineral rates, especially calcium and phosphorus. These biochemical results were in accordance with the histological and molecular changes. However, co-treatment with C. canaliculatus extract showed, for the first time, that this alga was effective against MB-induced hematotoxicity, genotoxicity, and oxidative stress in the blood and bone and maintained osteomineral metabolism and bone histo-architecture. Such observations might be explained by the strong in vitro antioxidant and antibacterial activities exhibited by the alga, as well as by its high levels in several minerals: calcium, phosphorus, sodium, potassium, magnesium, iron, and zinc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bocquené G, Franco A (2005) Pesticide contamination of the coastline of Martinique. Mar Pollut Bull 51(5):612–619

    Article  PubMed  CAS  Google Scholar 

  2. Eddleston M, Street JM, Self I, Thompson A, King T, Williams N, Naredog G, Dissanayake K, Yuf LM, Worek JH, Smith S, Thiermann H, John H, Eddie Clutton R (2012) A role for solvents in the toxicity of agricultural organophosphorus pesticides. Toxicology 294(2):94–103

    Article  PubMed  CAS  Google Scholar 

  3. Marchand M, Tissier C (2006) Évaluation du risque chimique dans l’environnement marin: exemple d’application aux installations industrielles du Nord-Cotentin. Hydroécologie Appliquée 15:43–85

    Article  Google Scholar 

  4. Baldi B, Lebaily P (2007) Cancers and pesticides. La Revue du Praticien 57:40–44

    PubMed  Google Scholar 

  5. Leroux P (2003) Modes d'action des produits phytosanitaires sur les organismes pathogènes des plantes. Comptes Rendus Biologies 326(1):9–21

    Article  PubMed  CAS  Google Scholar 

  6. Shukla S, Singh D, Kumar V, Kumar Chauhan A, Singh S, Ahmad I, Prasad Pandey H, Singh C (2015) NADPH oxidase mediated maneb- and paraquat-induced oxidative stress in rat polymorphs: crosstalk with mitochondrial dysfunction. Pestic Biochem Physiol 123:74–86

    Article  PubMed  CAS  Google Scholar 

  7. Meco G, Bonifati V, Vanacore N, Fabrizio E (1994) Parkinsonism after chronic exposure to the fungicide maneb (manganese ethylene-bisdithiocarbamate). Scand J Work Environ Health 20:301–305

    Article  PubMed  CAS  Google Scholar 

  8. Barlow BK, Lee DW, Cory-Slechta DA, Opanashuk LA (2005) Modulation of antioxidant defense systems by the environmental pesticide maneb in dopaminergic cells. Neurotoxicology 26:63–75

    Article  PubMed  CAS  Google Scholar 

  9. Zhang J, Fitsanakis VA, Gu G, Jing DA, Amarnath M, Montine V (2003) Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction. J Neurochem 84:336–346

    Article  PubMed  CAS  Google Scholar 

  10. Jaballi I, Ben Saad H, Bkhairia I, Kammoun I, Droguet M, Magné C, Boudawara T, Kallel C, Nasri M, Hakim A, Ben Amara I (2017) Increasing maneb doses induces reactive oxygen species overproduction and nephrotoxicity in adult mice. Toxicol Mech Methods 27(5):382–393

    Article  PubMed  CAS  Google Scholar 

  11. Ben Amara I, Ben Saad H, Hamdaoui L, Karray A, Boudawara T, Ben Ali Y, Zeghal N (2015) Maneb disturbs expression of superoxide dismutase and glutathione peroxidase, increases reactive oxygen species production, and induces genotoxicity in liver of adult mice. Environ Sci Pollut Res 22:12309–12322

    Article  CAS  Google Scholar 

  12. Lapierre Blanc A, Bouvier G, Garrigou A, Canal-Raffin M, Raherison C, Brochard P, Baldi I (2012) Effets chroniques des pesticides sur le système nerveux central: état des connaissances épidémiologiques. Rev Epidemiol Sante Publique 60(5):389–400

    Article  Google Scholar 

  13. Shanab SM (2007) Antioxidant and antibiotic activities of some seaweeds (Egyptian isolates). Int J Agric Biol 9(2):220–225

    CAS  Google Scholar 

  14. Ben Saad H, Nasri I, Elwej A, Krayem N, Jarraya R, Kallel C, Zeghal N, Ben Amara I (2014) A mineral and antioxidant-rich extract from the red marine algae Alsidium corallinum exhibits cytoprotective effects against potassium bromate-induced erythrocyte oxidative damages in mice. Biol Trace Elem Res 160(1):85–96

    Article  PubMed  CAS  Google Scholar 

  15. Ben Saad H, Kharrat N, Krayem N, Boudawara O, Boudawara T, Zeghal N, Ben Amara I (2016) Biological properties of Alsidium corallinum and its potential protective effects against damage caused by potassium bromate in the mouse liver. Environ Sci Pollut Res 23(4):3809–3823

    Article  CAS  Google Scholar 

  16. Wang T, Jonsdottir R, Ólafsdóttir G (2009) Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem 116(1):240–248

    Article  CAS  Google Scholar 

  17. Farvin KS, Jacobsen C (2013) Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem 138(2):1670–1681

    Article  CAS  Google Scholar 

  18. Pérez MJ, Falqué E, Domínguez H (2016) Antimicrobial action of compounds from marine seaweed. Marine Drugs 14(3):52

    Article  PubMed Central  CAS  Google Scholar 

  19. Moubayed NM, Al Houri HJ, Al Khulaifi MM, Al Farraj DA (2017) Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf). Saudi J Biol Sci 24(1):162–169

    Article  PubMed  CAS  Google Scholar 

  20. Santoso J, Gunji S, Yoshie-Stark Y, Suzuki T (2006) Mineral contents of Indonesian seaweeds and mineral solubility affected by basic cooking. Food Sci Technol Res 12(1):59–66

    Article  CAS  Google Scholar 

  21. Chan PT, Matanjun P (2017) Chemical composition and physicochemical properties of tropical red seaweed, Gracilaria changii. Food Chem 221:302–310

    Article  PubMed  CAS  Google Scholar 

  22. Chapman VJ, Chapman DJ (1980) Seaweeds and their uses, 3rd edn. Chapman and Hall, London, pp 30–61

    Book  Google Scholar 

  23. Fleurence J, Morançais M, Dumay J, Decottignies P, Turpin V, Munier M, Jaouen P (2012) What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends Food Sci Technol 27(1):57–61

    Article  CAS  Google Scholar 

  24. Burtin P (2003) Nutritional value of seaweeds. Elec J Env Agricult Food Chem Title 2(4):498–503

    Google Scholar 

  25. Ortiz J, Romero N, Robert P, Araya J, Lopez-Hernández J, Bozzo C, Navarrete C, Osorio A, Rios A (2006) Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea Antarctica. Food Chem 99:98–104

    Article  CAS  Google Scholar 

  26. Besada V, Andrade JM, Schultze F, González JJ (2009) Heavy metals in edible seaweeds commercialized for human consumption. J Mar Syst 75:303–315

    Article  Google Scholar 

  27. Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trans Food Sci Technol 10:25–28

    Article  CAS  Google Scholar 

  28. Harborne JB (1964) Biochemistry of phenolic compounds. Academic Press, London, pp 93–111

    Google Scholar 

  29. IAL (2005) Institute Adolfo Lutz. Physical-chemical methods of food analysis. In: Series A: technical standards and technical manuals, chap. IV. Ministry of Health, the National Agency for Sanitary Vigilance, Brasilia, pp. 116–141

  30. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 26:1199–1200

    Article  Google Scholar 

  31. Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M, Bruni R (2005) Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem 91:621–632

    Article  CAS  Google Scholar 

  32. Celiktas OY, Kocabas EH, Bedir E, Sukan FV, Ozek T, Baser KHC (2007) Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem 100:553–559

    Article  CAS  Google Scholar 

  33. Belpoggi F, Soffritti M, Guarino M, Lambertini L, Cevolani D, Maltoni C (2002) Results of long-term experimental studies on the carcinogenicity of ethylene-bis-dithiocarbamate (Mancozeb) in rats. Ann N Y Acad Sci 982(1):123–136

    Article  PubMed  CAS  Google Scholar 

  34. Sinha M, Manna M, Sil SM (2007) A 43 kD protein from the herb Cajanus indicus L. protects against fluoride induced oxidative stress in mice erythrocytes. Pathophysiology 14:47–54

    Article  PubMed  CAS  Google Scholar 

  35. Amend S R, Valkenburg K C & Pienta K J (2016) Murine hind limb long bone dissection and bone marrow isolation. J Vis Exp: JoVE, (110)

  36. Ramajayam G, Sridhar M, Karthikeyan S, Lavanya R, Veni S, Vignesh RC, Ilangovan R, Sitta DS, Gopalakrishnan V, Arunakaran J, Srinivasan N (2007) Effects of Aroclor 1254 on femoral bone metabolism in adult male Wistar rats. Toxicology 241:99–105

    Article  PubMed  CAS  Google Scholar 

  37. Pool-Zobel BL, Klein RG, Liegibel UM, Kuchenmeister F, Weber S, Schmezer P (1992) Systemic genotoxic effect of tobacco-related nitrosamines following oral and inhalational administration to Sprague-Dawley rats. Clin Invest 70:299–306

    CAS  Google Scholar 

  38. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  39. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  PubMed  CAS  Google Scholar 

  40. Kayali R, Cakatay U, Akcay T, Altug T (2006) Effect of alpha-lipoic acid supplementation on markers of protein oxidation in post-mitotic tissues of ageing rat. Cell Biochem Funct 24:79–86

    Article  PubMed  CAS  Google Scholar 

  41. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  PubMed  CAS  Google Scholar 

  42. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  CAS  Google Scholar 

  43. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  44. Jollow DJ, Mitchell JR, Zampaglione N, Gillete JR (1974) Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3,4bromobenzeneoxide as the hepatotoxic intermediate. Pharmacology 11:151–169

    Article  PubMed  CAS  Google Scholar 

  45. Talbot MS, Cifuentes M, Dunn MG, Shapses SA (2001) Energy restriction reduces bone density and biomechanical proprieties in aged female rats. J Nutr 131:2382–2387

    Article  Google Scholar 

  46. Gabe M (1968) Techniques Histologiques. Masson, Paris, pp 838–841

    Google Scholar 

  47. Kanno S, Shouji A, Hirata R, AsouK IM (2004) Effects of naringin on cytosine arabinoside (Ara-C)-induced cytotoxicity and apoptosis in p388 cells. Life Sci 75:353–365

    Article  PubMed  CAS  Google Scholar 

  48. Sellins KS, Cohen JJ (1987) Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes. J Immunol 139:3199–3206

    PubMed  CAS  Google Scholar 

  49. Aslam MN, Kreider JM, Paruchuri T, Bhagavathula N, Da Silva M, Zernicke R, Goldstein SA, Varani J (2010) A mineral-rich extract from the red marine algae Lithothamnion calcareum preserves bone structure and function in female mice on a western-style diet. Calcif Tissue Int 86:313–324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Pease HL, Holt RF (1977) Manganese ethylenebis (dithiocarbamate)(maneb)/ethylenethiourea (ETU) residue studies on five crops treated with ethylenebis (dithiocarbamate)(EBDC) fungicides. J Agric Food Chem 25(3):561–567

    Article  PubMed  CAS  Google Scholar 

  51. Chaudhri OB, Salem V, Murphy KG, Bloom SR (2008) Gastrointestinal satiety signals. Annu Rev Physiol 70:239–255

    Article  PubMed  CAS  Google Scholar 

  52. Nakagawa H, Kasahara S (1986) Effect of Ulva meal supplementation on the lipid metabolism of red sea bream. Nippon Suisan Gakkaishi 52:1887–1893

    Article  CAS  Google Scholar 

  53. Mustafa MG, Wakamatsu S, TakedaT A, Umino T, Nakagawa H (1995) Effects of algae meal as feed additive on growth, feed efficiency, and body composition in Red Sea Bream. Fish Sci 61:25–28

    Article  CAS  Google Scholar 

  54. Hogarth G, Ebony-Jewel CR, Richards I (2009) Functionalised dithiocarbamate complexes: synthesis and molecular structures of bis (2-methoxyethyl) dithiocarbamate complexes [M {S 2 CN (CH 2 CH 2 OMe) 2} 2] (M= Ni, Cu, Zn) and [Cu {S 2 CN (CH 2 CH 2 OMe) 2} 2][ClO 4]. Inorg Chim Acta 362(4):1361–1364

    Article  CAS  Google Scholar 

  55. Cornish ML, Garbary DJ (2010) Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25(4):155–171

    Article  CAS  Google Scholar 

  56. Favier A (2003) Le stress oxydant: Intérêt conceptuel et expérimental dans la compréhension des mécanismes des maladies et potentiel thérapeutique. L’actualité Chimique 270:108–115

    Google Scholar 

  57. Haleng J, Pincemail J, Defraigne JO, Charlier C, Chapelle JP (2007) Le stress oxydant. Rev Med Liege 10:628–638

    Google Scholar 

  58. Kale M, Rathore N, John S, Bhatnagar D (1999) Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat RBCs: a possible involvement of reactive oxygen species. Toxicol Lett 105:197–205. https://doi.org/10.1016/j. profoo.2011.09.248

    Article  PubMed  CAS  Google Scholar 

  59. Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85(3):632–639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Troudi A, Ben Amara I, Soudani N, Bouaziz H, Boudawara T, Zeghal N (2011) Oxidative stress induced by gibberellic acid in bone of suckling rats. Ecotoxicol Environ Saf 74(4):643–649

    Article  PubMed  CAS  Google Scholar 

  61. Ben Saad H, Ben Amara I, Krayem N, Boudawara T, Kallel C, Zeghal KM, Hakim A (2015) Ameliorative effects of vanillin on potassium bromate induces bone and blood disorders in vivo. Cell Mol Biol 61(7):12–22

    PubMed  CAS  Google Scholar 

  62. Paling D, Solanky BS, Riemer F et al (2013) Sodium accumulation is associated with disability and a progressive course in multiple sclerosis. Brain 136(7):2305–2317

    Article  PubMed  Google Scholar 

  63. Diebold J, Molina T, Le Tourneau A, Audouin J (2008) Difficulties in the interpretation of histologic lesions in lymph node pathology between lymphoma and reactive or inflammatory modifications. Revue Francophone des Laboratoires 406:43–50

    Article  Google Scholar 

  64. Ghanayem BI (1996) An overview of the hematotoxicity of ethylene glycol ethers. Occup Hyg 2:253–268

    CAS  Google Scholar 

  65. Zhou K, Yu L (2004) Effects of extraction solvent on wheat bran antioxidant activity estimation. Lebennsmittel-Wissenschaft und-Technologie 37(7):717–721

    Article  CAS  Google Scholar 

  66. Youdim KA, Shukitt-Hale B, MacKinnon S, Kalt W, Joseph JA (2000) Polyphenolics enhance red blood cell resistance to oxidative stress: in vitro and in vivo. Biochim Biophys Acta 1523(1):117–122

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Unit of Functional Genomics and Plant Physiology. Higher Institute of Biotechnology of Sfax, 3000, Sfax University, Tunisia.

Funding

The present work was supported by DGRST grants (Direction Générale de la Recherche Scientifique et Technique, Tunisie).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibtissem Ben Amara.

Ethics declarations

The experimental procedures were carried out according to the general guidelines on the use of living animals in scientific investigations, approved by the Ethical Committee of the Sciences Faculty of Sfax.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaballi, I., Saad, H.B., Bkhairia, I. et al. Cytoprotective Effects of the Red Marine Alga Chondrus canaliculatus Against Maneb-Induced Hematotoxicity and Bone Oxidative Damages in Adult Rats. Biol Trace Elem Res 184, 99–113 (2018). https://doi.org/10.1007/s12011-017-1151-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1151-7

Keywords

Navigation