Biological Trace Element Research

, Volume 183, Issue 1, pp 22–31 | Cite as

Zinc Metabolism and Metallothioneins

  • Abdulkerim Kasim Baltaci
  • Kemal Yuce
  • Rasim Mogulkoc
Article

Abstract

Among the trace elements, zinc is one of the most used elements in biological systems. Zinc is found in the structure of more than 2700 enzymes, including hydrolases, transferases, oxyreductases, ligases, isomerases, and lyases. Not surprisingly, it is present in almost all body cells. Preserving the stability and integrity of biological membranes and ion channels, zinc is also an intracellular regulator and provides structural support to proteins during molecular interactions. It acts as a structural element in nucleic acids or other gene-regulating proteins. Metallothioneins, the low molecular weight protein family rich in cysteine groups, are involved significantly in numerous physiological and pathological processes including particularly oxidative stress. A critical role of metallothioneins (MT) is to bind zinc with high affinity and to serve as an intracellular zinc reservoir. By releasing free intracellular zinc when needed, MTs mediate the unique physiological roles of zinc. MT expression is induced by zinc elevation, and thus, zinc homeostasis is maintained. That MT mediates the effects of zinc, besides having strong radical scavenging effects, points to the critical part it plays in oxidative stress. The present review aims to give information on metallothioneins, which have critical importance in the metabolism and molecular pathways of zinc.

Keywords

Zinc Metabolism Physiological functions Metallothioneins 

References

  1. 1.
    Mason JB (2016) Vitamins, trace minerals, and other micronutrients. In: Goldman LaS. Andrew I (ed) Cecil medicine, 24 edn. Saunders Elsevier, Philadelphia, pp 1445–1455. doi: 10.1016/B978-1-4557-5017-7.00218-X
  2. 2.
    Laity JHL, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Current Opinion in Structural Biology 39–46:11Google Scholar
  3. 3.
    Voorhees JL, Rao GV, Gordon TJ, Brooks CL (2011) Zinc binding to human lactogenic hormones and the human prolactin receptor. FEBS Lett 585(12):1783–1788. doi: 10.1016/j.febslet.2011.04.019 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hie M, Tsukamoto I (2011) Administration of zinc inhibits osteoclastogenesis through the suppression of RANK expression in bone. Eur J Pharmacol 668(1–2):140–146. doi: 10.1016/j.ejphar.2011.07.003 PubMedCrossRefGoogle Scholar
  5. 5.
    Seo HJ, Cho YE, Kim T, Shin HI, Kwun IS (2010) Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr Res Pract 4(5):356–361. doi: 10.4162/nrp.2010.4.5.356 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Raheem O, Olufemi SE, Bachinski LL, Vihola A, Sirito M, Holmlund-Hampf J, Haapasalo H, Li YP, Udd B, Krahe R (2010) Mutant (CCTG)n expansion causes abnormal expression of zinc finger protein 9 (ZNF9) in myotonic dystrophy type 2. Am J Pathol 177(6):3025–3036. doi: 10.2353/ajpath.2010.100179 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Fukada T, Civic N, Furuichi T, Shimoda S, Mishima K, Higashiyama H, Idaira Y, Asada Y, Kitamura H, Yamasaki S, Hojyo S, Nakayama M, Ohara O, Koseki H, Dos Santos HG, Bonafe L, Ha-Vinh R, Zankl A, Unger S, Kraenzlin ME, Beckmann JS, Saito I, Rivolta C, Ikegawa S, Superti-Furga A, Hirano T (2008) The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One 3(11):e3642. doi: 10.1371/journal.pone.0003642 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lı Y, Hough CJ, Sw S, Sarvey JM, Frederıckson CJ (2001) Rapid translocation of Zn21 from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J Neurophysiol 86:2597–2604PubMedCrossRefGoogle Scholar
  9. 9.
    Tamano H, Koike Y, Nakada H, Shakushi Y, Takeda A (2016) Significance of synaptic Zn2+ signaling in zincergic and non-zincergic synapses in the hippocampus in cognition. J Trace Elem Med Biol. doi: 10.1016/j.jtemb.2016.03.003
  10. 10.
    Tassabehji NM, Corniola RS, Alshingiti A, Levenson CW (2008) Zinc deficiency induces depression-like symptoms in adult rats. Physiol Behav 95(3):365–369. doi: 10.1016/j.physbeh.2008.06.017 PubMedCrossRefGoogle Scholar
  11. 11.
    Adlard PA, Parncutt JM, Finkelstein DI, Bush AI (2010) Cognitive loss in zinc transporter-3 knock-out mice: a phenocopy for the synaptic and memory deficits of Alzheimer’s disease? J Neurosci 30(5):1631–1636. doi: 10.1523/JNEUROSCI.5255-09.2010 PubMedCrossRefGoogle Scholar
  12. 12.
    Daaboul D, Rosenkranz E, Uciechowski P, Rink L (2012) Repletion of zinc in zinc-deficient cells strongly up-regulates IL-1beta-induced IL-2 production in T-cells. Metallomics 4(10):1088–1097. doi: 10.1039/c2mt20118f PubMedCrossRefGoogle Scholar
  13. 13.
    Aydemir TB, Chang SM, Guthrie GJ, Maki AB, Ryu MS, Karabiyik A, Cousins RJ (2012) Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia). PLoS One 7(10):e48679. doi: 10.1371/journal.pone.0048679 PubMedCrossRefGoogle Scholar
  14. 14.
    Pourhassanali N, Roshan-Milani S, Kheradmand F, Motazakker M, Bagheri M, Saboory E (2016) Zinc attenuates ethanol-induced Sertoli cell toxicity and apoptosis through caspase-3 mediated pathways. Reprod Toxicol 61:97–103. doi: 10.1016/j.reprotox.2016.03.041 PubMedCrossRefGoogle Scholar
  15. 15.
    Smith AF, Longpre J, Loo G (2012) Inhibition by zinc of deoxycholate-induced apoptosis in HCT-116 cells. J Cell Biochem 113(2):650–657. doi: 10.1002/jcb.23394 PubMedCrossRefGoogle Scholar
  16. 16.
    Pang W, Leng X, Lu H, Yang H, Song N, Tan L, Jiang Y, Guo C (2013) Depletion of intracellular zinc induces apoptosis of cultured hippocampal neurons through suppression of ERK signaling pathway and activation of caspase-3. Neurosci Lett 552:140–145. doi: 10.1016/j.neulet.2013.07.057 PubMedCrossRefGoogle Scholar
  17. 17.
    Kimura T, Kambe T (2016) The functions of metallothionein and ZIP and ZnT transporters: an overview and perspective. Int J Mol Sci 17(3):336. doi: 10.3390/ijms17030336 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kao LW, Rusynıak DE (2016) Chronic poisoning: trace metals and others. In: Goldman L, Schafer AI (eds) Goldman-cecil medicine, Elsevier/Saunders, Philadelphia, pp 91–98. doi: 10.1016/B978-1-4557-5017-7.00022-2
  19. 19.
    Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14(3–4):331–341PubMedCrossRefGoogle Scholar
  20. 20.
    Nakashima AS, Dyck RH (2009) Zinc and cortical plasticity. Brain Res Rev 59(2):347–373. doi: 10.1016/j.brainresrev.2008.10.003 PubMedCrossRefGoogle Scholar
  21. 21.
    Colvin RA, Fontaine CP, Laskowski M, Thomas D (2003) Zn2+ transporters and Zn2+ homeostasis in neurons. Eur J Pharmacol 479(1–3):171–185. doi: 10.1016/j.ejphar.2003.08.067 PubMedCrossRefGoogle Scholar
  22. 22.
    Lönnerdal B (2000) Zinc and health: current status and future directions. Proceedings of a workshop. Bethesda, Maryland, USA. November 4–5, 1998. J Nutr 130 (5S Suppl):1341S–1519SGoogle Scholar
  23. 23.
    Kierszenbaum AL, Tres L (2015) Histology and cell biology: an introduction to pathology. 4 th Edition Elsevier SaundersGoogle Scholar
  24. 24.
    Merrett K, Ljunggren MK, Mondal D, Griffith M, Rafat M (2012) Biomaterials properties production and devices type I collagen biological functions synthesis and medicinal applications. In: Henriques ME, Pinto M (eds) Type I collagen: biological functions, synthesis and medicinal applications, Nova Science Publishers, New Yor. pp 1–13Google Scholar
  25. 25.
    Osorio R, Yamauti M, Osorio E, Ruiz-Requena ME, Pashley DH, Tay FR, Toledano M (2011) Zinc reduces collagen degradation in demineralized human dentin explants. J Dent 39(2):148–153. doi: 10.1016/j.jdent.2010.11.005 PubMedCrossRefGoogle Scholar
  26. 26.
    Lovejoy B, Cleasby A, Hassell AM, Longley K, Luther MA, Weigl D, McGeehan G, McElroy AB, Drewry D, Lambert MH (1994) Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 263:375–377PubMedCrossRefGoogle Scholar
  27. 27.
    Tyszka-Czochara M, Pasko P, Reczynski W, Szlosarczyk M, Bystrowska B, Opoka W (2014) Zinc and propolis reduces cytotoxicity and proliferation in skin fibroblast cell culture: total polyphenol content and antioxidant capacity of propolis. Biol Trace Elem Res 160(1):123–131. doi: 10.1007/s12011-014-0019-3 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Ohashi K, Nagata Y, Wada E, Zammit PS, Shiozuka M, Matsuda R (2015) Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade. Exp Cell Res 333(2):228–237. doi: 10.1016/j.yexcr.2015.03.003 PubMedCrossRefGoogle Scholar
  29. 29.
    Luo X, Barbieri D, Davison N, Yan Y, de Bruijn JD, Yuan H (2014) Zinc in calcium phosphate mediates bone induction: in vitro and in vivo model. Acta Biomater 10(1):477–485. doi: 10.1016/j.actbio.2013.10.011 PubMedCrossRefGoogle Scholar
  30. 30.
    Ito A, Kawamura H, Otsuka M, Ikeuchi M, Ohgushi H, Ishikawa K, Onuma K, Kanzaki N, Sogo Y, Ichinose N (2002) Zinc-releasing calcium phosphate for stimulating bone formation. Mater Sci Eng C 22(1):21–25. doi: 10.1016/S0928-4931(02)00108-X CrossRefGoogle Scholar
  31. 31.
    Kawamura H, Ito A, Miyakawa S, Layrolle P, Ojima K, Ichinose N, Tateishi T (2000) Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. J Biomed Mater Res 50(2):184–190. doi: 10.1002/(sici)1097-4636(200005)50:2<184::aid-jbm13>3.0.co;2-3 PubMedCrossRefGoogle Scholar
  32. 32.
    Tang Z, Sahu SN, Khadeer MA, Bai G, Franklin RB, Gupta A (2006) Overexpression of the ZIP1 zinc transporter induces an osteogenic phenotype in mesenchymal stem cells. Bone 38(2):181–198. doi: 10.1016/j.bone.2005.08.010 PubMedCrossRefGoogle Scholar
  33. 33.
    Paller AS, Mancini AJ (2016) Disorders of hair and nails. In: Hurwitz clinical pediatric dermatology: A textbook of skin disorders of childhood and adolescence. 5 edn., Elsevier Saunders. pp 136–147. doi: 10.1016/B978-0-323-24475-6.00007-8
  34. 34.
    Randall VA, Botchkareva NV (2008) The biology of hair growth. In: Ahluwalia GS (ed) Cosmetics applications of laser and light-based systems. 1 edn, William Andrew Publishing, Boston, pp 26–35Google Scholar
  35. 35.
    Takeda A (2014) Zinc signal in brain functions. In: Fukada T, Kambe T (eds) Zinc signals in cellular functions and disorders. Springer Japan, Tokyo. pp 161–175. doi: 10.1007/978-4-431-55114-0
  36. 36.
    Paoletti P, Vergnano AM, Barbour B, Casado M (2009) Zinc at glutamatergic synapses. Neuroscience 158(1):126–136. doi: 10.1016/j.neuroscience.2008.01.061 PubMedCrossRefGoogle Scholar
  37. 37.
    Mlyniec K, Singewald N, Holst B, Nowak G (2015) GPR39 Zn(2+)-sensing receptor: a new target in antidepressant development? J Affect Disord 174:89–100. doi: 10.1016/j.jad.2014.11.033 PubMedCrossRefGoogle Scholar
  38. 38.
    Barrett K, Brooks H, Boitono S, Barman S (2010) Ganong’s review of medical physiology. 23 edn. McGraw-3Hill Medical, New York.Google Scholar
  39. 39.
    Chi ZH, Wang X, Cai JQ, Stoltenberg M, Danscher G, Wang ZY (2008) Zinc transporter 3 immunohistochemical tracing of sprouting mossy fibres. Neurochem Int 52(7):1305–1309. doi: 10.1016/j.neuint.2008.02.008 PubMedCrossRefGoogle Scholar
  40. 40.
    Besser L, Chorin E, Sekler I, Silverman WF, Atkin S, Russell JT, Hershfinkel M (2009) Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus. J Neurosci 29(9):2890–2901. doi: 10.1523/JNEUROSCI.5093-08.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Li Y, Hough CJ, Suh SW, Sarvey JM, Frederickson CJ (2001) Rapid translocation of Zn21 from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J Neurophysiol 86:2597–2604PubMedCrossRefGoogle Scholar
  42. 42.
    Takeda A, Fujii H, Minamino T, Tamano H (2014) Intracellular Zn(2+) signaling in cognition. J Neurosci Res 92(7):819–824. doi: 10.1002/jnr.23385 PubMedCrossRefGoogle Scholar
  43. 43.
    Martel G, Hevi C, Kane-Goldsmith N, Shumyatsky GP (2011) Zinc transporter ZnT3 is involved in memory dependent on the hippocampus and perirhinal cortex. Behav Brain Res 223(1):233–238. doi: 10.1016/j.bbr.2011.04.020 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Mlyniec K, Nowak G (2013) GPR39 up-regulation after selective antidepressants. Neurochem Int 62(7):936–939. doi: 10.1016/j.neuint.2013.02.024 PubMedCrossRefGoogle Scholar
  45. 45.
    Cunha MP, Machado DG, Bettio LE, Capra JC, Rodrigues AL (2008) Interaction of zinc with antidepressants in the tail suspension test. Prog Neuro-Psychopharmacol Biol Psychiatry 32(8):1913–1920. doi: 10.1016/j.pnpbp.2008.09.006 CrossRefGoogle Scholar
  46. 46.
    Tahmasebi K, Amani R, Nazari Z, Ahmadi K, Moazzen S, Mostafavi SA (2017) Association of mood disorders with serum zinc concentrations in adolescent female students. Biol Trace Elem Res. doi: 10.1007/s12011-016-0917-7
  47. 47.
    Nowak G, Legutko B, Szewczyk B, Papp M, Sanak M, Pilc A (2004) Zinc treatment induces cortical brain-derived neurotrophic factor gene expression. Eur J Pharmacol 492(1):57–59. doi: 10.1016/j.ejphar.2004.03.038 PubMedCrossRefGoogle Scholar
  48. 48.
    Refaey HE, Amri HSA, Ashour AE, Ahmed AF (2015) Administration of zinc with paroxetine improved the forced swim test behavioral pattern of treated mice in acute and sub-acute study. Journal of Behavioral and Brain Science 05(07):213–220. doi: 10.4236/jbbs.2015.57022 CrossRefGoogle Scholar
  49. 49.
    Zhao H, Alam A, San CY, Eguchi S, Chen Q, Lian Q, Ma D (2017) Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: recent developments. Brain Res 1665:1–21. doi: 10.1016/j.brainres.2017.03.029 PubMedCrossRefGoogle Scholar
  50. 50.
    Huang YZ, Pan E, Xiong ZQ, McNamara JO (2008) Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron 57(4):546–558. doi: 10.1016/j.neuron.2007.11.026 PubMedCrossRefGoogle Scholar
  51. 51.
    Pifl C, Wolf A, Rebernik P, Reither H, Berger ML (2009) Zinc regulates the dopamine transporter in a membrane potential and chloride dependent manner. Neuropharmacology 56(2):531–540. doi: 10.1016/j.neuropharm.2008.10.009 PubMedCrossRefGoogle Scholar
  52. 52.
    Hori H, Kunugi H (2013) Dopamine agonist-responsive depression. Psychogeriatrics 13(3):189–195. doi: 10.1111/psyg.12014 PubMedCrossRefGoogle Scholar
  53. 53.
    Szewczyk B, Poleszak E, Wlaz P, Wrobel A, Blicharska E, Cichy A, Dybala M, Siwek A, Pomierny-Chamiolo L, Piotrowska A, Branski P, Pilc A, Nowak G (2009) The involvement of serotonergic system in the antidepressant effect of zinc in the forced swim test. Prog Neuro-Psychopharmacol Biol Psychiatry 33(2):323–329. doi: 10.1016/j.pnpbp.2008.12.011 CrossRefGoogle Scholar
  54. 54.
    Satala G, Duszynska B, Lenda T, Nowak G, Bojarski AJ (2017) Allosteric inhibition of serotonin 5-HT7 receptors by zinc ions. Mol Neurobiol. doi: 10.1007/s12035-017-0536-0
  55. 55.
    Doboszewska U, Wlaz P, Nowak G, Radziwon-Zaleska M, Cui R, Mlyniec K (2017) Zinc in the monoaminergic theory of depression: its relationship to neural plasticity. Neural Plast 2017:3682752. doi: 10.1155/2017/3682752 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Oteiza PI (2012) Zinc and the modulation of redox homeostasis. Free Radic Biol Med 53(9):1748–1759. doi: 10.1016/j.freeradbiomed.2012.08.568 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Zou M-H, Shi C, Cohen RA (2002) Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Investig 109(6):817–826. doi: 10.1172/jci0214442 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Smietana MJ, Arruda EM, Faulkner JA, Brooks SV, Larkin LM (2010) Reactive oxygen species on bone mineral density and mechanics in Cu, Zn superoxide dismutase (Sod1) knockout mice. Biochem Biophys Res Commun 403(1):149–153. doi: 10.1016/j.bbrc.2010.11.006 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Eide DJ (2011) The oxidative stress of zinc deficiency. Metallomics 3(11):1124–1129. doi: 10.1039/c1mt00064k PubMedCrossRefGoogle Scholar
  60. 60.
    Aimo L, Cherr GN, Oteiza PI (2010) Low extracellular zinc increases neuronal oxidant production through nadph oxidase and nitric oxide synthase activation. Free Radic Biol Med 48(12):1577–1587. doi: 10.1016/j.freeradbiomed.2010.02.040 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hwang J, Choi S, Koh J (2002) The role of NADPH oxidase, neuronal nitric oxide synthase and poly(ADP ribose) polymerase in oxidative neuronal death induced in cortical cultures by brain-derived neurotrophic factor and neurotrophin-4/5. J Neurochem 82:894–902PubMedCrossRefGoogle Scholar
  62. 62.
    Baltaci AK, Sunar F, Mogulkoc R, Oztekin E (2004) The effects of zinc deficiency and supplementation on lipid peroxidation in bone tissue of ovariectomized rats. Toxicology 203(1–3):77–82. doi: 10.1016/j.tox.2004.05.021 PubMedCrossRefGoogle Scholar
  63. 63.
    McCord MC, Aizenman E (2014) The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease. Front Aging Neurosci 6:77. doi: 10.3389/fnagi.2014.00077 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sensi SL, Jeng JM (2004) Rethinking the excitotoxic ionic milieu: the emerging role of Zn2+ in ischemic neuronal injury. Curr Mol Med 4:83–107CrossRefGoogle Scholar
  65. 65.
    Syama S, Sreekanth PJ, Varma HK, Mohanan PV (2014) Zinc oxide nanoparticles induced oxidative stress in mouse bone marrow mesenchymal stem cells. Toxicol Mech Methods 24(9):644–653. doi: 10.3109/15376516.2014.956914 PubMedCrossRefGoogle Scholar
  66. 66.
    Gao HL, Zheng W, Xin N, Chi ZH, Wang ZY, Chen J, Wang ZY (2009) Zinc deficiency reduces neurogenesis accompanied by neuronal apoptosis through caspase-dependent and -independent signaling pathways. Neurotox Res 16(4):416–425. doi: 10.1007/s12640-009-9072-7 PubMedCrossRefGoogle Scholar
  67. 67.
    Dittmer S, Sahin M, Pantlen A, Saxena A, Toutzaris D, Pina AL, Geerts A, Golz S, Methner A (2008) The constitutively active orphan G-protein-coupled receptor GPR39 protects from cell death by increasing secretion of pigment epithelium-derived growth factor. J Biol Chem 283(11):7074–7081. doi: 10.1074/jbc.M704323200 PubMedCrossRefGoogle Scholar
  68. 68.
    Seth R, Corniola RS, Gower-Winter SD, Morgan TJ Jr, Bishop B, Levenson CW (2015) Zinc deficiency induces apoptosis via mitochondrial p53- and caspase-dependent pathways in human neuronal precursor cells. J Trace Elem Med Biol 30:59–65. doi: 10.1016/j.jtemb.2014.10.010 PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang D, Li Y, Zhu T, Zhang F, Yang Z, Miao D (2011) Zinc supplementation results in improved therapeutic potential of bone marrow-derived mesenchymal stromal cells in a mouse ischemic limb model. Cytotherapy 13(2):156–164. doi: 10.3109/14653249.2010.512633 PubMedCrossRefGoogle Scholar
  70. 70.
    Silva LR, Girard D (2016) Human eosinophils are direct targets to nanoparticles: zinc oxide nanoparticles (ZnO) delay apoptosis and increase the production of the pro-inflammatory cytokines IL-1beta and IL-8. Toxicol Lett. doi: 10.1016/j.toxlet.2016.07.020
  71. 71.
    Kim JH, Jeong MS, Kim DY, Her S, Wie MB (2015) Zinc oxide nanoparticles induce lipoxygenase-mediated apoptosis and necrosis in human neuroblastoma SH-SY5Y cells. Neurochem Int 90:204–214. doi: 10.1016/j.neuint.2015.09.002 PubMedCrossRefGoogle Scholar
  72. 72.
    Ku JH, Seo SY, Kwak C, Kim HH (2012) The role of survivin and Bcl-2 in zinc-induced apoptosis in prostate cancer cells. Urol Oncol 30(5):562–568. doi: 10.1016/j.urolonc.2010.06.001 PubMedCrossRefGoogle Scholar
  73. 73.
    LaCasse EC, Baird S, Korneluk RG, MacKenzie AE (1998) The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17(25):3247–3259. doi: 10.1038/sj.onc.1202569 PubMedCrossRefGoogle Scholar
  74. 74.
    Maares M, Haase H (2016) Zinc and immunity: an essential interrelation. Arch Biochem Biophys. doi: 10.1016/j.abb.2016.03.022
  75. 75.
    Bonaventura P, Benedetti G, Albarede F, Miossec P (2015) Zinc and its role in immunity and inflammation. Autoimmun Rev 14(4):277–285. doi: 10.1016/j.autrev.2014.11.008 PubMedCrossRefGoogle Scholar
  76. 76.
    Baltaci AK, Mogulkoc R, Bediz CS, Pekel A (2005) Effects of zinc deficiency and pinealectomy on cellular immunity in rats infected with Toxoplasma gondii. Biol Trace Elem Res 104(1):47–56. doi: 10.1385/bter:104:1:047 PubMedCrossRefGoogle Scholar
  77. 77.
    Vauzour D, Camprubi-Robles M, Miquel-Kergoat S, Andres-Lacueva C, Banati D, Barberger-Gateau P, Bowman GL, Caberlotto L, Clarke R, Hogervorst E, Kiliaan AJ, Lucca U, Manach C, Minihane AM, Mitchell ES, Perneczky R, Perry H, Roussel AM, Schuermans J, Sijben J, Spencer JP, Thuret S, van de Rest O, Vandewoude M, Wesnes K, Williams RJ, Williams RS, Ramirez M (2017) Nutrition for the ageing brain: towards evidence for an optimal diet. Ageing Res Rev 35:222–240. doi: 10.1016/j.arr.2016.09.010 PubMedCrossRefGoogle Scholar
  78. 78.
    Prasad AS, Bao B, Beck FW, Sarkar FH (2011) Zinc-suppressed inflammatory cytokines by induction of A20-mediated inhibition of nuclear factor-kappaB. Nutrition 27(7–8):816–823. doi: 10.1016/j.nut.2010.08.010 PubMedCrossRefGoogle Scholar
  79. 79.
    Yamaguchi N, Yamaguchi N (2015) The seventh zinc finger motif of A20 is required for the suppression of TNF-alpha-induced apoptosis. FEBS Lett 589(12):1369–1375. doi: 10.1016/j.febslet.2015.04.022 PubMedCrossRefGoogle Scholar
  80. 80.
    Jarosz M, Olbert M, Wyszogrodzka G, Mlyniec K, Librowski T (2017) Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-kappaB signaling. Inflammopharmacology 25(1):11–24. doi: 10.1007/s10787-017-0309-4 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Baltaci AK, Bediz CS, Mogulkoc R, Kurtoglu E, Pekel A (2003) Effect of zinc and melatonin supplementation on cellular immunity in rats with toxoplasmosis. Biol Trace Elem Res 96(1–3):237–245. doi: 10.1385/bter:96:1-3:237 PubMedCrossRefGoogle Scholar
  82. 82.
    Kaltenberg J, Plum LM, Ober-Blobaum JL, Honscheid A, Rink L, Haase H (2010) Zinc signals promote IL-2-dependent proliferation of T cells. Eur J Immunol 40(5):1496–1503. doi: 10.1002/eji.200939574 PubMedCrossRefGoogle Scholar
  83. 83.
    Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14(5–6):353–357. doi: 10.2119/2008-00033.Prasad PubMedPubMedCentralGoogle Scholar
  84. 84.
    Ostrakhovitch EA, Song YP, Cherian MG (2016) Basal and copper-induced expression of metallothionein isoform 1,2 and 3 genes in epithelial cancer cells: the role of tumor suppressor p53. J Trace Elem Med Biol 35:18–29. doi: 10.1016/j.jtemb.2016.01.008 PubMedCrossRefGoogle Scholar
  85. 85.
    Swindell WR (2011) Metallothionein and the biology of aging. Ageing Res Rev 10(1):132–145. doi: 10.1016/j.arr.2010.09.007 PubMedCrossRefGoogle Scholar
  86. 86.
    Hidalgo J, Aschner M, Zatta P, Vasak M (2001) Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull 55:133–145PubMedCrossRefGoogle Scholar
  87. 87.
    Rahman MT, Ley MD (2001) Metallothionein isogene transcription in red blood cell precursors from human cord blood. Eur J Biochem 268:849–856PubMedCrossRefGoogle Scholar
  88. 88.
    Romanucci M, Bongiovanni L, Russo A, Capuccini S, Mechelli L, Ordeix L, Della Salda L (2011) Oxidative stress in the pathogenesis of canine zinc-responsive dermatosis. Vet Dermatol 22(1):31–38. doi: 10.1111/j.1365-3164.2010.00907.x PubMedCrossRefGoogle Scholar
  89. 89.
    Pinter TB, Stillman MJ (2015) Putting the pieces into place: properties of intact zinc metallothionein 1A determined from interaction of its isolated domains with carbonic anhydrase. Biochem J 471(3):347–356. doi: 10.1042/BJ20150676 PubMedCrossRefGoogle Scholar
  90. 90.
    Aydemir TB, Blanchard RK, Cousins RJ (2006) Zinc supplementation of young men alters metallothionein, zinc transporter, and cytokine gene expression in leukocyte populations. Proc Natl Acad Sci U S A 103(6):1699–1704. doi: 10.1073/pnas.0510407103 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Jing L, Li L, Zhao J, Zhao J, Sun Z, Peng S (2016) Zinc-induced metallothionein overexpression prevents doxorubicin toxicity in cardiomyocytes by regulating the peroxiredoxins. Xenobiotica 46(8):715–725. doi: 10.3109/00498254.2015.1110760 PubMedCrossRefGoogle Scholar
  92. 92.
    Fong L, Tan K, Tran C, Cool J, Scherer MA, Elovaris R, Coyle P, Foster BK, Rofe AM, Xian CJ (2009) Interaction of dietary zinc and intracellular binding protein metallothionein in postnatal bone growth. Bone 44(6):1151–1162. doi: 10.1016/j.bone.2009.02.011 PubMedCrossRefGoogle Scholar
  93. 93.
    Kang M, Zhao L, Ren M, Deng M, Li C (2015) Reduced metallothionein expression induced by zinc deficiency results in apoptosis in hepatic stellate cell line LX-2. Int J Clin Exp Med 8(11):20603–20609PubMedPubMedCentralGoogle Scholar
  94. 94.
    Zhang B, Satoh M, Nishimura N, Suzuki JS, Sone H, Aoki Y, Tohyama C (1998) Metallothionein deficiency promotes mouse skin carcinogenesis induced by 7,12-dimethylbenz[a]anthracene. Cancer Res 58(18):4044–4046PubMedGoogle Scholar
  95. 95.
    Lin SF, Wei H, Maeder D, Franklin RB, Feng P (2009) Profiling of zinc-altered gene expression in human prostate normal vs. cancer cells: a time course study. J Nutr Biochem 20(12):1000–1012. doi: 10.1016/j.jnutbio.2008.09.004 PubMedCrossRefGoogle Scholar
  96. 96.
    Douglas-Jones AG, Schmid KW, Bier B, Horgan K, Lyons K, Dallimore ND, Moneypenny IJ, Jasani B (1995) Metallothionein expression in duct carcinoma in situ of the breast. Hum Pathol 26(2):217–222PubMedCrossRefGoogle Scholar
  97. 97.
    Shimoda R, Achanzar WE, Qu W, Nagamine T, Takagi H, Mori M, Waalkes MP (2003) Metallothionein is a potential negative regulator of apoptosis. Toxicol Sci 73(2):294–300. doi: 10.1093/toxsci/kfg095 PubMedCrossRefGoogle Scholar
  98. 98.
    Ostrakhovitch EA, Olsson PE, Jiang S, Cherian MG (2006) Interaction of metallothionein with tumor suppressor p53 protein. FEBS Lett 580(5):1235–1238. doi: 10.1016/j.febslet.2006.01.036 PubMedCrossRefGoogle Scholar
  99. 99.
    Cherian M (2003) Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat Res, Fundam Mol Mech Mutagen 533(1–2):201–209. doi: 10.1016/j.mrfmmm.2003.07.013 CrossRefGoogle Scholar
  100. 100.
    Fan LZ, Cherian MG (2002) Potential role of p53 on metallothionein induction in human epithelial breast cancer cells. Br J Cancer 87(9):1019–1026. doi: 10.1038/sj.bjc.6600549 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Pedersen MO, Larsen A, Stoltenberg M, Penkowa M (2009) The role of metallothionein in oncogenesis and cancer prognosis. Prog Histochem Cytochem 44(1):29–64. doi: 10.1016/j.proghi.2008.10.001 PubMedCrossRefGoogle Scholar
  102. 102.
    Vasto S, Mocchegiani E, Malavolta M, Cuppari I, Listi F, Nuzzo D, Ditta V, Candore G, Caruso C (2007) Zinc and inflammatory/immune response in aging. Ann N Y Acad Sci 1100:111–122. doi: 10.1196/annals.1395.009 PubMedCrossRefGoogle Scholar
  103. 103.
    Mocchegiani E, Giacconi R, Cipriano C, Muzzioli M, Fattoretti P, Bertoni-Freddari C, Isani G, Zambenedetti P, Zatta P (2001) Zinc-bound metallothioneins as potential biological markers of ageing. Brain Res Bull 55(2):147–153PubMedCrossRefGoogle Scholar
  104. 104.
    Penkowa M, Nielsen H, Hidalgo J, Bernth N, Moos T (1999) Distribution of metallothionein I + II and vesicular zinc in the developing central nervous system: correlative study in the rat. J Comp Neurol 412:303–318PubMedCrossRefGoogle Scholar
  105. 105.
    Mocchegiani E, Malavolta M, Costarelli L, Giacconi R, Cipriano C, Piacenza F, Tesei S, Basso A, Pierpaoli S, Lattanzio F (2010) Zinc, metallothioneins and immunosenescence. Proc Nutr Soc 69(3):290–299. doi: 10.1017/S0029665110001862 PubMedCrossRefGoogle Scholar
  106. 106.
    Mocchegiani E, Muzzioli M, Cipriano C, Cipriano C (1998) Zinc, T-cell pathways, aging: role of metallothioneins. Mech Ageing Dev 106:183–204PubMedCrossRefGoogle Scholar
  107. 107.
    Coto JA, Hadden EM, Sauro M, Zorn N, Hadden HW (1992) Interleukin 1 regulates secretion of zinc-thymulin by human thymic epithelial cells and its action on T-lymphocyte proliferation and nuclear protein kinase C. Proc Natl Acad Sci U S A 89:7752–7756PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Penkowa M (2006) Metallothioneins are multipurpose neuroprotectants during brain pathology. FEBS J 273(9):1857–1870. doi: 10.1111/j.1742-4658.2006.05207.x PubMedCrossRefGoogle Scholar
  109. 109.
    Penkowa M, Giralt M, Camats J, Hidalgo J (2002) Metallothionein 1+2 protect the CNS during neuroglial degeneration induced by 6-aminonicotinamide. J Comp Neurol 444(2):174–189PubMedCrossRefGoogle Scholar
  110. 110.
    Stankovic RK, Chung RS, Penkowa M (2007) Metallothioneins I and II: neuroprotective significance during CNS pathology. Int J Biochem Cell Biol 39:484–489. doi: 10.1016/j.biocel.2006.09.010 PubMedCrossRefGoogle Scholar
  111. 111.
    Khatai L, Goessler W, Lorencova H, Zangger K (2004) Modulation of nitric oxide-mediated metal release from metallothionein by the redox state of glutathione in vitro. Eur J Biochem 271(12):2408–2416. doi: 10.1111/j.1432-1033.2004.04160.x PubMedCrossRefGoogle Scholar
  112. 112.
    Spahl DU, Berendji-Grün D, Suschek CV, Kolb-Bachofen V, Kröncke K (2003) Regulation of zinc homeostasis by inducible NO synthase-derived NO: nuclear metallothionein translocation and intranuclear Zn+2 release. PNAS 100:13952–13957. doi: 10.1073/pnas.2335190100 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Bell SG, Vallee BL (2009) The metallothionein/thionein system: an oxidoreductive metabolic zinc link. Chembiochem 10(1):55–62. doi: 10.1002/cbic.200800511 PubMedCrossRefGoogle Scholar
  114. 114.
    Baird SK, Kurz T, Brunk UT (2006) Metallothionein protects against oxidative stress-induced lysosomal destabilization. Biochem J 394(Pt 1):275–283. doi: 10.1042/BJ20051143 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Abdulkerim Kasim Baltaci
    • 1
  • Kemal Yuce
    • 1
  • Rasim Mogulkoc
    • 1
  1. 1.Department of Physiology, Medical FacultySelcuk UniversityKonyaTurkey

Personalised recommendations