Skip to main content
Log in

Alterations of Mg2+ After Hemorrhagic Shock

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Hemorrhagic shock is generally characterized by hemodynamic instability with cellular hypoxia and diminishing cellular function, resulting from an imbalance between systemic oxygen delivery and consumption and redistribution of fluid and electrolytes. Magnesium (Mg) is the fourth most abundant cation overall and second most abundant intracellular cation in the body and an essential cofactor for the energy production and cellular metabolism. Data for blood total Mg (tMg; free-ionized, protein-bound, and anion-bound forms) and free Mg2+ levels after a traumatic injury are inconsistent and only limited information is available on hemorrhagic effects on free Mg2+ as the physiologically active form. The aim of this study was to determine changes in blood Mg2+ and tMg after hemorrhage in rats identifying mechanism and origin of the changes in blood Mg2+. Hemorrhagic shock produced significant increases in blood Mg2+, plasma tMg, Na+, K+, Cl, anion gap, partial pressures of oxygen, glucose, and blood urea nitrogen but significant decreases in RBC tMg, blood Ca2+, HCO3 , pH, partial pressures of carbon dioxide, hematocrit, hemoglobin, total cholesterol, and plasma/RBC ATP. During hemorrhagic shock, K+, anion gap, and BUN showed significant positive correlations with changes in blood Mg2+ level, while Ca2+, pH, and T-CHO correlated to Mg2+ in a negative manner. In conclusion, hemorrhagic shock induced an increase in both blood-free Mg2+ and tMg, resulted from Mg2+ efflux from metabolic damaged cell with acidosis and ATP depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pfeifer R, Tarkin IS, Rocos B, Pape HC (2009) Patterns of mortality and causes of death in polytrauma patients—has anything changed? Injury 40:907–911

    Article  PubMed  Google Scholar 

  2. Gutierrez G, Reines HD, Wulf-Gutierrez ME (2004) Clinical review: hemorrhagic shock. Crit Care 8(5):373–381

    Article  PubMed  PubMed Central  Google Scholar 

  3. Peitzman AB, Billiar TR, Harbrecht BG, Kelly E, Udekwu AO, Simmons RL (1995) Hemorrhagic shock. Curr Probl Surg 32:925–1002

    Article  CAS  PubMed  Google Scholar 

  4. Angele MK, Schneider CP, Chaudry IH (2008) Bench-to-bedside review: latest results in hemorrhagic shock. Crit Care 12(4):218

    Article  PubMed  PubMed Central  Google Scholar 

  5. Horton JW, Coln D (1988) Changes in red blood cell electrolytes and ATP in newborn shock. Pediatr Res 24(4):438–441

    Article  CAS  PubMed  Google Scholar 

  6. Shires GT, Cunningham JN, Backer CR, Reeder SF, Illner H, Wagner IY, Maher J (1972) Alterations in cellular membrane function during hemorrhagic shock in primates. Ann Surg 176(3):288–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keller ME, Aihara R, LaMorte WW, Hirsch EF (2003) Organ-specific changes in high-energy phosphates after hemorrhagic shock and resuscitation in the rat. J Am Coll Surg 196(5):685–690

    Article  PubMed  Google Scholar 

  8. Kuai Q, Wang C, Wang Y, Li W, Zhang G, Qiao Z, He M, Wang X, Wang Y, Jiang X, Su L, He Y, Ren S, Yu Q (2016) Energy metabolism regulated by HDAC inhibitor attenuates cardiac injury in hemorrhagic rat model. Sci Rep 6:38219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grubbs RD (2002) Intracellular magnesium and magnesium buffering. Biometals 15(3):251–259

    Article  CAS  PubMed  Google Scholar 

  10. Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A (2000) Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta 294(1–2):1–26

    Article  CAS  PubMed  Google Scholar 

  11. Sayeed MM, Zhu M, Maitra SR (1989) Alterations in cellular calcium and magnesium during circulatory/septic shock. Magnesium 8(3–4):179–189

    CAS  PubMed  Google Scholar 

  12. Alvarez-Leefmans FJ, Giraldez F, Gamiño SM (1987) Intracellular free magnesium in excitable cells: its measurement and its biologic significance. Can J Physiol Pharmacol 65(5):915–925

    Article  CAS  PubMed  Google Scholar 

  13. Valencic F, Dodich BN, Hill OA Jr, Strain WH, Pories WJ, Flynn A (1975) Arterial-venous magnesium gradients in hypovolemic shock: an indication of the irreversible state. Proc Soc Exp Biol Med 150(3):660–663

    Article  CAS  PubMed  Google Scholar 

  14. Carroll RG, Iams SG, Pryor WH Jr, Allison EJ Jr (1990) Serum magnesium increases following severe hemorrhage in dogs blocked by verapamil treatment. Resuscitation 19(1):41–52

    Article  CAS  PubMed  Google Scholar 

  15. Katircioğlu SF, Ulus AT, Saritas Z, Gökçe P (1999) Effects of ATP-MgCl2 administration in hypovolemic dogs. Panminerva Med 41(4):323–330

    PubMed  Google Scholar 

  16. Letson HL, Dobson GP (2011) Unexpected 100% survival following 60% blood loss using small-volume 7.5% NaCl with adenocaine and Mg2+ in the rat model of extreme hemorrhagic shock. Shock 36(6):586–594

    Article  CAS  PubMed  Google Scholar 

  17. Johansson M, Whiss PA (2007) Weak relationship between ionized and total magnesium in serum of patients requiring magnesium status. Biol Trace Elem Res 115(1):13–21

    Article  CAS  PubMed  Google Scholar 

  18. Memon ZI, Altura BT, Benjamin JL, Cracco RQ, Altura BM (1995) Predictive value of serum ionized but not total magnesium levels in head injuries. Scand J Clin Lab Invest 55(8):671–677

    Article  CAS  PubMed  Google Scholar 

  19. Fülöp A, Turóczi Z, Garbaisz D, Harsányi L, Szijártó A (2013) Experimental models of hemorrhagic shock: a review. Eur Surg Res 50(2):57–70

    Article  PubMed  Google Scholar 

  20. Ben Rayana MC, Burnett RW, Covington AK, D'Orazio P, Fogh-Andersen N, Jacobs E, Külpmann WR, Kuwa K, Larsson L, Lewenstam A, Maas AH, Mager G, Naskalski JW, Okorodudu AO, Ritter C, St John A (2008) International Federation of Clinical Chemistry and Laboratory Medicine (IFCC); IFCC Scientific Division Committee on Point of Care Testing. IFCC guideline for sampling, measuring and reporting ionized magnesium in plasma. Clin Chem Lab Med 46:21–26

    Article  CAS  PubMed  Google Scholar 

  21. Rahman MM, Kim SJ, Kim GB, Hong CU, Lee YU, Kim SZ, Kim JS, Kang HS (2009) Nitrite-induced methemoglobinaemia affects blood ionized and total magnesium level by hydrolysis of plasma adenosine triphosphate in rat. Basic Clin Pharmacol Toxicol 105(5):294–300

    Article  CAS  PubMed  Google Scholar 

  22. Rahman MM, Lee SJ, Mun AR, Adam GO, Park RM, Kim GB, Kang HS, Kim JS, Kim SJ, Kim SZ (2014) Relationships between blood Mg2+ and energy metabolites/enzymes after acute exhaustive swimming exercise in rats. Biol Trace Elem Res 161(1):85–90

    Article  CAS  PubMed  Google Scholar 

  23. Xiong W, Liang Y, Li X, Liu G, Wang Z (2016) Erythrocyte intracellular Mg2+ concentration as an index of recognition and memory. Sci Rep 6:26975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barbagallo M, Gupta RK, Dominguez LJ, Resnick LM (2000) Cellular ionic alterations with age: relation to hypertension and diabetes. J Am Geriatr Soc 48(9):1111–1116

    Article  CAS  PubMed  Google Scholar 

  25. Gasbarrini A, Borle AB, Farghali H, Bender C, Francavilla A, Van Thiel D (1992) Effect of anoxia on intracellular ATP, Na+ i, Ca2+ i, Mg2+ i, and cytotoxicity in rat hepatocytes. J Biol Chem 267(10):6654–6663

    CAS  PubMed  Google Scholar 

  26. Jung DW, Apel L, Brierley GP (1990) Matrix free Mg2+ changes with metabolic state in isolated heart mitochondria. Biochemistry 29(17):4121–4128

    Article  CAS  PubMed  Google Scholar 

  27. Li HY, Quamme GA (1994) Effect of pH on intracellular free Mg2+ in isolated adult rat cardiomyocytes. Biochim Biophys Acta 1222(2):164–170

    Article  CAS  PubMed  Google Scholar 

  28. Kim SJ, Cho IG, Kang HS, Kim JS (2006a) pH-dependent modulation of intracellular free magnesium ions with ion-selective electrodes in papillary muscle of guinea pig. J Vet Sci 7:31–36

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kim SJ, Kang HS, Lee MY, Lee SJ, Seol JW, Park SY, Kim IS, Kim NS, Kim SZ, Kwak YG, Kim JS (2006b) Ketamine-induced cardiac depression is associated with increase in [Mg2+]i and activation of p38 MAP kinase and ERK 1/2 in guinea pig. Biochem Biophys Res Commun 349:716–722

    Article  CAS  PubMed  Google Scholar 

  30. Van de Water JM, Van den Bergh WM, Hoff RG, Algra A, Rinkel GJ (2007) Hypocalcaemia may reduce the beneficial effect of magnesium treatment in aneurysmal subarachnoid haemorrhage. Magnes Res 20(2):130–135

    CAS  PubMed  Google Scholar 

  31. Bruegger D, Kemming GI, Jacob M, Meisner FG, Wojtczyk CJ, Packert KB, Keipert PE, Faithfull NS, Habler OP, Becker BF, Rehm M (2007) Causes of metabolic acidosis in canine hemorrhagic shock: role of unmeasured ions. Crit Care 11(6):R130

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brandfonbrener M, Whang R (1967) Effect of respiratory alkalosis on survival in hemorrhagic shock. Circ Res 21(4):461–468

    Article  CAS  PubMed  Google Scholar 

  33. Scully CG, Daluwatte C, Marques NR, Khan M, Salter M, Wolf J, Nelson C, Salsbury J, Enkhbaatar P, Kinsky M, Kramer GC, Strauss DG (2016) Effect of hemorrhage rate on early hemodynamic responses in conscious sheep. Physiol Rep 4(7):e12739

    Article  PubMed  PubMed Central  Google Scholar 

  34. Berezina TL, Zaets SB, Kozhura VL, Novoderzhkina IS, Kirsanova AK, Deitch EA, Machiedo GW (2001) Morphologic changes of red blood cells during hemorrhagic shock replicate changes of aging. Shock 15(6):467–470

    Article  CAS  PubMed  Google Scholar 

  35. Muzyamba MC, Campbell EH, Gibson JS (2006) Effect of intracellular magnesium and oxygen tension on K+-Cl cotransport in normal and sickle human red cells. Cell Physiol Biochem 17(3–4):121–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clarkson PM, Kearns AK, Rouzier P, Rubin R, Thompson PD (2006) Serum creatine kinase levels and renal function measures in exertional muscle damage. Med Sci Sports Exerc 38(4):623–627

    Article  CAS  PubMed  Google Scholar 

  37. Stendig-Lindberg G, Shapiro Y, Tepperberg M, Moran D (1999) Not only strenuous but also sustained moderate physical effort causes magnesium deficiency. Trace Elem Electroly 16:156–161

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by research fund from Honam University, 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MY., Yang, D.K. & Kim, SJ. Alterations of Mg2+ After Hemorrhagic Shock. Biol Trace Elem Res 180, 120–126 (2017). https://doi.org/10.1007/s12011-017-0994-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-0994-2

Keywords

Navigation