Skip to main content
Log in

Effects of Copper on Hemocyte Apoptosis, ROS Production, and Gene Expression in White Shrimp Litopenaeus vannamei

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper, a common chemical contaminant in aquatic environment, is known to be toxic to aquatic life at high concentrations. In the present study, we evaluated the apoptotic cell ratio and ROS production in hemocytes of the white shrimp Litopenaeus vannamei exposed to 1 or 5 mg L−1 Cu for 0, 3, 6, 12, 24, and 48 h. The expression changes of antioxidant biomarker genes, i.e., copper-zinc superoxide dismutase (Cu-Zn SOD) and catalase (CAT), apoptosis-related genes, i.e., caspase-3 and inhibitor of apoptosis protein (IAP), and a specific biomarker gene of heavy metal pollution, i.e., metallothionein (MT), were also determined in hemocytes. Significant increases in ROS production were observed in both treatment groups at each time points. The apoptotic cell ratios were significantly increased at 6–48 h among shrimp exposed to 1 mg L−1 Cu and at each time points in 5 mg L−1 Cu group. These results indicated that Cu would induce oxidative stress and apoptosis in the hemocyte of L. vannamei. Quantitative real-time PCR analysis revealed that the relative expression levels of Cu-Zn SOD, CAT, caspase-3, IAP, and MT were upregulated in a dose-dependent and time-dependent manner, suggesting the involvement of these genes in stress response against Cu exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hong MX (2015) Shrimp farming in China—lessons from its developmental history global aquaculture advocate. http://advocate.gaalliance.org/shrimp-farming-in-china-what-should-we-learn-from-its-developmental-history/

  2. Ransberry VE, Blewett TA, McClelland GB (2016) The oxidative stress response in freshwater-acclimated killifish (Fundulus heteroclitus) to acute copper and hypoxia exposure. Comp Biochem Phys Part C: Toxicol Pharm 179:11–18

    CAS  Google Scholar 

  3. Wang SL, Xu XR, Sun YX, Liu JL, Li HB (2013) Heavy metal pollution in coastal areas of South China: a review. Mar Pollu Bull 76:7–15

    Article  CAS  Google Scholar 

  4. Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  CAS  PubMed  Google Scholar 

  5. Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  CAS  PubMed  Google Scholar 

  6. Vijayavel K, Downs CA, Ostrander GK, Richmond RH (2012) Oxidative DNA damage induced by iron chloride in the larvae of the lace coral Pocillopora damicornis. Comp Biochem Phys C Toxicol Pharm 155:275–280

    Article  CAS  Google Scholar 

  7. Santos MHS, da Cunha NT, Bianchini A (2000) Effects of copper and zinc on growth, feeding and oxygen consumption of Farfantepenaeus paulensis postlarvae (Decapoda: Penaeidae). J Exp Mar Biol Ecol 247:233–242

    Article  CAS  PubMed  Google Scholar 

  8. Valavanidis A, Vlachogianni T (2010) Metal pollution in ecosystems. Ecotoxicology studies and risk assessment in the marine environment. Sci Adv Environ Toxicol Ecot Issues 1–14

  9. Wang ZH, Feng J, Nie XP (2015) Recent environmental changes reflected by metals and biogenic elements in sediments from the Guishan Island, the Pearl River Estuary, China. Estuar Coast and Shelf S 164:493–505

    Article  CAS  Google Scholar 

  10. Chen JC, Lin CH (2001) Toxicity of copper sulfate for survival, growth, molting and feeding of juveniles of the tiger shrimp, Penaeus monodon. Aquaculture 192:55–65

    Article  CAS  Google Scholar 

  11. Liao CM, Chang CF, Yeh CH, Chen SC, Chiang KC, Chio CP (2006) Metal stresses affect the population dynamics of disease transmission in aquaculture species. Aquaculture 257:321–332

    Article  CAS  Google Scholar 

  12. Zeeshan M, Murugadas A, Ghaskadbi S, Rajendran RB, Akbarsha MA (2016) ROS dependent copper toxicity in hydra-biochemical and molecular study. Comp Biochem Phys C: Toxicol Pharm 185:1–12

    Google Scholar 

  13. Schwarz J, Mitchelmore C, Jones R, O’Dea A, Seymour S (2013) Exposure to copper induces oxidative and stress responses and DNA damage in the coral Montastraea franksi. Comp Biochem Phys C: Toxicol Pharm 157:272–279

    CAS  Google Scholar 

  14. Sun S, Ge XP, Zhu J, Fu HT, Jiang ZQ (2014) Effects of water-borne copper on the survival, antioxidant status, metallothionein-I mRNA expression and physiological responses of the Chinese mitten crab, Eriocheir sinensis (Decapoda: Brachyura) larvae. Sci Mar 78:91–97

    Article  Google Scholar 

  15. Kong X, Jiang H, Wang S, Wu X, Fei W, Li L, Nie G, Li X (2013) Effects of copper exposure on the hatching status and antioxidant defense at different developmental stages of embryos and larvae of goldfish Carassius auratus. Chemosphere 92:1458–1464

    Article  CAS  PubMed  Google Scholar 

  16. Xian JA, Wang AL, Ye CX, Chen XD, Wang WN (2010) Phagocytic activity, respiratory burst, cytoplasmic free-Ca(2+) concentration and apoptotic cell ratio of haemocytes from the black tiger shrimp, Penaeus monodon under acute copper stress. Comp Biochem Phys C Toxicol Pharm 152:182–188

    Article  Google Scholar 

  17. Martinez A, Romero Y, Castillo T, Mascaro M, Lopez-Rull I, Simoes N, Arcega-Cabrera F, Gaxiola G, Barbosa A (2014) The effect of copper on the color of shrimps: redder is not always healthier. PLoS One 9:e107673

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rao MS, Anjaneyulu N (2008) Effect of copper sulfate on molt and reproduction in shrimp Litopenaeus vannamei. Int J Biol Chem 2:35–41

    Article  CAS  Google Scholar 

  19. Frías-Espericueta MG, Castro-Longoria R, Barrón-Gallardo GJ, Osuna-López JI, Abad-Rosales SM, Páez-Osuna F, Voltolina D (2008) Histological changes and survival of Litopenaeus vannamei juveniles with different copper concentrations. Aquaculture 278:97–100

    Article  Google Scholar 

  20. Yeh ST, Liu CH, Chen JC (2004) Effect of copper sulfate on the immune response and susceptibility to Vibrio alginolyticus in the white shrimp Litopenaeus vannamei. Fish Shellfish Immun 17:437–446

    Article  CAS  Google Scholar 

  21. Xian JA, Miao YT, Li B, Guo H, Wang AL (2013) Apoptosis of tiger shrimp (Penaeus monodon) haemocytes induced by Escherichia coli lipopolysaccharide. Comp Biochem Phys A: Mol Integ Physiol 164:301–306

    Article  CAS  Google Scholar 

  22. Fan TJ, Han LH, Cong RS, Liang J (2005) Caspase family proteases and apoptosis. Acta Bioch Bioph Sin 37:719–727

    Article  CAS  Google Scholar 

  23. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    Article  CAS  PubMed  Google Scholar 

  25. Deveraux QL, Reed JC (1999) IAP family proteins—suppressors of apoptosis. Gene Dev 13:239–252

    Article  CAS  PubMed  Google Scholar 

  26. Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3:401–410

    Article  CAS  PubMed  Google Scholar 

  27. Leu JH, Chen YC, Chen LL, Chen KY, Huang HT, Ho JM, Lo CF (2012) Litopenaeus vannamei inhibitor of apoptosis protein 1 (LvIAP1) is essential for shrimp survival. Dev Comp Immunol 38:78–87

    Article  CAS  PubMed  Google Scholar 

  28. Robertson L, Bray W, Leung-Trujillo J, Lawrence A (1987) Practical molt staging of Penaeus setiferus and Penaeus stylirostris. J World Aquacult Soc 18:180–185

    Article  Google Scholar 

  29. Guo H, Xian JA, Li B, Ye CX, Wang AL, Miao YT, Liao SA (2013) Gene expression of apoptosis-related genes, stress protein and antioxidant enzymes in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress. Comp Biochem and Phys C: Toxicol Pharm 157:366–371

    CAS  Google Scholar 

  30. Wei K, Yang J (2016) Copper-induced oxidative damage to the prophenoloxidase-activating system in the freshwater crayfish Procambarus clarkii. Fish Shellfish Immun 52:221–229

    Article  CAS  Google Scholar 

  31. Liu WX, Li XD, Shen ZG, Wang DC, Wai OW, Li YS (2003) Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environ Pollut 121:377–388

    Article  CAS  PubMed  Google Scholar 

  32. Ip CCM, Li XD, Zhang G, Wai OWH, Li YS (2007) Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environ Pollut 147:311–323

    Article  CAS  PubMed  Google Scholar 

  33. Qiu YW (2015) Bioaccumulation of heavy metals both in wild and mariculture food chains in Daya Bay, South China. Estuar Coast Shelf S Part B 163:7–14

    Article  CAS  Google Scholar 

  34. Ministry of Agriculture SEPA (2012) Report on state of the fishery eco-environment in China, Ministry of Agriculture, State Environmental Protection Administration. Beijing, China

  35. Soegianto A, Irawan B, Usman N (2013) Effects of sublethal copper concentrations on gills of white shrimp (Litopenaeus vannamei, Boone 1931). B Environ Contam Tox 91:630–634

    Article  CAS  Google Scholar 

  36. Zhou Y, Allen Davis D, Rhodes MA (2014) Comparative evaluation of copper sulfate and tribasic copper chloride on growth performance and tissue response in Pacific white shrimp Litopenaeus vannamei fed practical diets. Aquaculture 434:411–417

    Article  CAS  Google Scholar 

  37. Chang CC, Yeh MS, Cheng W (2009) Cold shock-induced norepinephrine triggers apoptosis of haemocytes via caspase-3 in the white shrimp, Litopenaeus vannamei. Fish Shellfish Immun 27:695–700

    Article  CAS  Google Scholar 

  38. Gong Y, Ju CY, Zhang XB (2015) The miR-1000-p53 pathway regulates apoptosis and virus infection in shrimp. Fish Shellfish Immun 46:516–522

    Article  CAS  Google Scholar 

  39. Luzio A, Monteiro SM, Fontaínhas-Fernandes AA, Pinto-Carnide O, Matos M, Coimbra AM (2013) Copper induced upregulation of apoptosis related genes in zebrafish (Danio rerio) gill. Aquat Toxicol 128–129(2):183–189

    Article  PubMed  Google Scholar 

  40. Wang B, Feng L, Jiang WD, Wu P, Kuang SY, Jiang J, Tang L, Tang WN, Zhang YA, Liu Y, Zhou XQ (2015) Copper-induced tight junction mRNA expression changes, apoptosis and antioxidant responses via NF-κB, TOR and Nrf2 signaling molecules in the gills of fish: preventive role of arginine. Aquat Toxicol 158:125–137

    Article  CAS  PubMed  Google Scholar 

  41. Rhee JS, Yu IT, Kim BM, Jeong CB, Lee KW, Kim MJ et al (2013) Copper induces apoptotic cell death through reactive oxygen species-triggered oxidative stress in the intertidal copepod Tigriopus japonicus. Aquat Toxicol 132:182–189

    Article  PubMed  Google Scholar 

  42. Leu JH, Kuo YC, Kou GH, Lo CF (2008) Molecular cloning and characterization of an inhibitor of apoptosis protein (IAP) from the tiger shrimp, Penaeus monodon. Dev Comp Immunol 32:121–133

    Article  CAS  PubMed  Google Scholar 

  43. Roy N, Deveraux QL, Takahashi R, Salvesen GS, Reed JC (1997) The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. The EMBO J 16:6914–6925

    Article  CAS  PubMed  Google Scholar 

  44. Menze MA, Fortner G, Nag S, Hand SC (2010) Mechanisms of apoptosis in Crustacea: what conditions induce versus suppress cell death? Apoptosis 15:293–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D’Amelio M, Sheng M, Cecconi F (2012) Caspase-3 in the central nervous system: beyond apoptosis. Trends Neurosci 35:700–709

    Article  PubMed  Google Scholar 

  46. de Almagro MC, Vucic D (2012) The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Exp Oncol 34:200–211

    PubMed  Google Scholar 

  47. Rico D, Martín-González A, Díaz S, de Lucas P, Gutiérrez JC (2009) Heavy metals generate reactive oxygen species in terrestrial and aquatic ciliated protozoa. Comp Biochem Phys C: Toxicol Pharm 149:90–96

    Google Scholar 

  48. Matés JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104

    Article  PubMed  Google Scholar 

  49. Orrenius S (2007) Reactive oxygen species in mitochondria-mediated cell death. Drug Metab Rev 39:443–455

    Article  CAS  PubMed  Google Scholar 

  50. Griendling KK, Fitz Gerald GA (2003) Oxidative stress and cardiovascular injury part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108:1912–1916

    Article  PubMed  Google Scholar 

  51. Lu X, Wang C, Liu BZ (2015) The role of Cu/Zn-SOD and Mn-SOD in the immune response to oxidative stress and pathogen challenge in the clam Meretrix meretrix. Fish Shellfish Immun 42:58–65

    Article  CAS  Google Scholar 

  52. Hung MN, Shiomi R, Nozaki R, Kondo H, Hirono I (2014) Identification of novel copper/zinc superoxide dismutase (Cu/ZnSOD) genes in kuruma shrimp Marsupenaeus japonicus. Fish Shellfish Immun 40:472–477

    Article  CAS  Google Scholar 

  53. Zhang Q, Li F, Zhang X, Dong B, Zhang J, Xie Y, Xiang J (2008) cDNA cloning, characterization and expression analysis of the antioxidant enzyme gene, catalase, of Chinese shrimp Fenneropenaeus chinensis. Fish Shellfish Immun 24:584–591

    Article  CAS  Google Scholar 

  54. He JY, Chi CF, Liu HH (2014) Identification and analysis of an intracellular Cu/Zn superoxide dismutase from Sepiella maindroni under stress of Vibrio harveyi and Cd2+. Dev Comp Immunol 47:1–5

    Article  CAS  PubMed  Google Scholar 

  55. Guo H, Miao YT, Xian JA, Qian K, Wang AL (2015) Expression profile of antioxidant enzymes in hemocytes from freshwater prawn Macrobrachium rosenbergii exposed to an elevated level of copper. B Environ Contam Tox 95:447–451

    Article  CAS  Google Scholar 

  56. Miao L, St. Clair DK (2009) Regulation of superoxide dismutase genes: implications in disease. Free Radical Bio Med 47:344–356

    Article  CAS  Google Scholar 

  57. Mahmood K, Yang JS, Chen D, Wang M, Yang F, Yang WJ (2009) Response of metallothionein gene-1 to laboratory exposure to heavy metals and thermal stress in the freshwater prawn Macrobrachium rosenbergii. J Hazard Mater 167:523–530

    Article  CAS  PubMed  Google Scholar 

  58. Vasak M, Hasler DW (2000) Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4:177–183

    Article  CAS  PubMed  Google Scholar 

  59. Liu Y, Wu H, Kou L, Liu X, Zhang J, Guo Y et al (2014) Two metallothionein genes in Oxya chinensis: molecular characteristics, expression patterns and roles in heavy metal stress. PLoS One 9:e112759

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bouskill NJ, Handy RD (2006) Differentiating copper and arsenic toxicity using biochemical biomarkers in Asellus aquaticus and Dreissena polymorpha. Ecotox Environ Safe 65:342–349

    Article  CAS  Google Scholar 

  61. Pedersen SN, Lundebye AK, Depledge MH (1997) Field application of metallothionein and stress protein biomarkers in the shore crab (Carcinus maenas) exposed to trace metals. Aquat Toxicol 37:183–200

    Article  CAS  Google Scholar 

  62. Thanomsit C, Nantanawat P, Wassmur B, Gräns J, Celander MC, Kanchanopas-Barnette P (2013) Characterization of metallothionein from Asian sea bass (Lates calcarifer, Bloch) and application as a biomarker for heavy metal exposure in Thailand. Asian J Water Environ Pollut 10:53–64

    CAS  Google Scholar 

  63. Wu JP, Chen HC (2005) Metallothionein induction and heavy metal accumulation in white shrimp Litopenaeus vannamei exposed to cadmium and zinc. Comp Biochem Phys C: Toxicol Pharm 140:383–394

    Google Scholar 

  64. Wang Y, Zhao Z, Zhang L, Hu C, Ren C, Yuan L (2014) Molecular characterization of metallothionein from white shrimp, Litopenaeus vannamei and its expression response to salinity stress. Mar Biol Res 10:731–737

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchun Shen.

Ethics declarations

Funding

This research was supported by National Natural Science Foundation of China (31600321), Guangdong Provincial Natural Science Foundation (2015A030310438), Program for Scientific Research Start-Up Funds of Guangdong Ocean University, Special Program for Outstanding Young Teachers of Guangdong Ocean University (HDYQ2015003), and Guangdong Ocean University Student’s Platform for Innovation and Entrepreneurship Training.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Li, K., Wang, W. et al. Effects of Copper on Hemocyte Apoptosis, ROS Production, and Gene Expression in White Shrimp Litopenaeus vannamei . Biol Trace Elem Res 179, 318–326 (2017). https://doi.org/10.1007/s12011-017-0974-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-0974-6

Keywords

Navigation