Skip to main content
Log in

Analysis of the Interactions Between Thioredoxin and 20 Selenoproteins in Chicken

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Thioredoxin (Trx) is a small molecular protein with complicated functions in a number of processes, including inflammation, apoptosis, embryogenesis, cardiovascular disease, and redox regulation. Some selenoproteins, such as glutathione peroxidase (Gpx), iodothyronine deiodinase (Dio), and thioredoxin reductase (TR), are involved in redox regulation. However, whether there are interactions between Trx and selenoproteins is still not known. In the present paper, we used a Modeller, Hex 8.0.0, and the KFC2 Server to predict the interactions between Trx and selenoproteins. We used the Modeller to predict the target protein in objective format and assess the accuracy of the results. Molecular interaction studies with Trx and selenoproteins were performed using the molecular docking tools in Hex 8.0.0. Next, we used the KFC2 Server to further test the protein binding sites. In addition to the selenoprotein physiological functions, we also explored potential relationships between Trx and selenoproteins beyond all the results we got. The results demonstrate that Trx has the potential to interact with 19 selenoproteins, including iodothyronine deiodinase 1 (Dio1), iodothyronine deiodinase 3 (Dio3), glutathione peroxidase 1 (Gpx1), glutathione peroxidase 2 (Gpx2), glutathione peroxidase 3 (Gpx3), glutathione peroxidase 4 (Gpx4), selenoprotein H (SelH), selenoprotein I (SelI), selenoprotein M (SelM), selenoprotein N (SelN), selenoprotein T (SelT), selenoprotein U (SelU), selenoprotein W (SelW), selenoprotein 15 (Sep15), methionine sulfoxide reductase B (Sepx1), selenophosphate synthetase 1 (SPS1), TR1, TR2, and TR3, among which TR1, TR2, TR3, SPS1, Sep15, SelN, SelM, SelI, Gpx2, Gpx3, Gpx4, and Dio3 exhibited intense correlations with Trx. However, additional experiments are needed to verify them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Dio1:

Iodothyronine deiodinase 1

Dio2:

Iodothyronine deiodinase 2

Dio3:

Iodothyronine deiodinase 3

Gpx1:

Glutathione peroxidase 1

Gpx2:

Glutathione peroxidase 2

Gpx3:

Glutathione peroxidase 3

Gpx4:

Glutathione peroxidase 4

SelH:

Selenoprotein H

SelI:

Selenoprotein I

SelM:

Selenoprotein M

SelN:

Selenoprotein N

SelO:

Selenoprotein O

Sep15:

Selenoprotein 15

SelU:

Selenoprotein U

SelW:

Selenoprotein W

Sepx1/MrsB:

Methionine sulfoxide reductase B

SPS1:

Selenophosphate Synthetase 1

SPS2:

Selenophosphate Synthetase2

TR1:

Thioredoxin reductase 1

TR2:

Thioredoxin reductase 2

TR3:

Thioredoxin reductase 3

Trx:

Thioredoxin

Sec:

Selenocysteine

GSH:

Glutathione

ER:

Endoplasmic Reticulum

Rdx:

Radixin

References

  1. Dean MF, Martin H, Sansom PA (1994) Characterization of a thioredoxin-related surface protein. Biochem J 304:861–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Griffiths HR, Bennett SJ, Olofsson P et al (2014) Thioredoxin as a putative biomarker and candidate target in age-related immune decline. Biochem Soc T 42:922–927

    Article  CAS  Google Scholar 

  3. Whayne TF Jr, Parinandi N, Maulik N (2015) Thioredoxins in cardiovascular disease. Can J Physiol Pharm 93:903–911

    Article  CAS  Google Scholar 

  4. Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radical Bio Med 66:75–87

    Article  CAS  Google Scholar 

  5. Sengupta R, Holmgren A (2012) The role of thioredoxin in the regulation of cellular processes by S-nitrosylation. BBA-Biomembranes 1820:689–700

    CAS  PubMed  Google Scholar 

  6. Lillig CH, Holmgren A (2007) Thioredoxin and related molecules—from biology to health and disease. Antioxid Redox Sign 9:25–47

    Article  CAS  Google Scholar 

  7. Jablonska E, Reszka E, Gromadzinska J et al (2016) The effect of selenium supplementation on glucose homeostasis and the expression of genes related to glucose metabolism. Nutrients 8:772

    Article  PubMed Central  Google Scholar 

  8. Klein EA, Thompson I, Tangen CM et al (2012) Vitamin E and the risk of prostate cancer: updated results of the Selenium and Vitamin E Cancer Prevention Trial (SELECT). J Clin Oncol NLM 30(5_suppl):7

    Article  Google Scholar 

  9. Kielczykowska M, Musik I, Kurzepa J et al (2016) The influence of lithium and/or selenium treatment on homeostasis of chosen bioelements in rats. Biol Trace Elem Res 12:1–7

    Google Scholar 

  10. Papp LV, Lu J, Holmgren A et al (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Sign 9:775–806

    Article  CAS  Google Scholar 

  11. Zhang Y, Romero H, Salinas G et al (2006) Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues. Genome Biol 7:R94.1–R94.17

    Google Scholar 

  12. Wang Q, Huang J, Zhang H et al (2016) Selenium deficiency-induced apoptosis of chick embryonic vascular smooth muscle cells and correlations with 25 selenoproteins. Biol Trace Elem Res 9:1–9

    Google Scholar 

  13. Barrett CW, Short SP, Williams CS (2016) Selenoproteins and oxidative stress-induced inflammatory tumorigenesis in the gut. Cell Mol Life Sci 8:1–10

    Google Scholar 

  14. Yao H, Zhao W, Zhao X et al (2014) Selenium deficiency mainly influences the gene expressions of antioxidative selenoproteins in chicken muscles. Biol Trace Elem Res 161:318–327

    Article  CAS  PubMed  Google Scholar 

  15. Yao HD, Wu Q, Zhang ZW et al (2013) Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of se-deficient chicks. J Nutr 143:613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yao HD, Wu Q, Zhang ZW et al (2013) Selenoprotein W serves as an antioxidant in chicken myoblasts. BBA-Biomembranes 1830:3112–3120

    CAS  PubMed  Google Scholar 

  17. Zhang ZW, Wang QH, Zhang JL et al (2012) Effects of oxidative stress on immunosuppression induced by selenium deficiency in chickens. Biol Trace Elem Res 149:352–361

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Z, Liu M, Guan Z et al (2016) Disbalance of calcium regulation related genes in heart of broilers induced by selenium deficiency. Avian Pathol 21:1–24

    Google Scholar 

  19. Rout S, Mahapatra RK (2016) In silico screening of novel inhibitors of M17 Leucine Amino Peptidase (LAP) of Plasmodium vivax as therapeutic candidate. Biomed Pharmacother 82:192–201

    Article  CAS  PubMed  Google Scholar 

  20. Shahnazari P, Sayehmiri K, Minuchehr Z et al (2014) The increased level of serum p53 in hepatitis B-associated liver cirrhosis. Iran J Med Sci 39:446–451

    PubMed  PubMed Central  Google Scholar 

  21. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 54:56.1–56.37

    Article  Google Scholar 

  22. Pramanik S, Kutzner A, Heese K (2016) 3D structure, dimerization modeling, and lead discovery by ligand-protein interaction analysis of p60 transcription regulator protein (p60TRP). Mol Inform 35:99–108

    Article  CAS  PubMed  Google Scholar 

  23. Oropeza-Moe M, Wisloff H, Bernhoft A (2015) Selenium deficiency associated porcine and human cardiomyopathies. J Trace Elem Med Biol 31:148–156

    Article  CAS  PubMed  Google Scholar 

  24. Toppo S, Vanin S, Bosello V et al (2008) Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxid Redox Sign 10:1501–1514

    Article  CAS  Google Scholar 

  25. Lubos E, Loscalzo J, Handy DE et al (2011) Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Sign 15:1957–1997

    Article  CAS  Google Scholar 

  26. Kryukov GV, Castellano S, Novoselov SV et al (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    Article  CAS  PubMed  Google Scholar 

  27. Cheng WH, Ho YS, Valentine BA et al (1998) Cellular glutathione peroxidase is the mediator of body selenium to protect against paraquat lethality in transgenic mice. J Nutr 128:1070–1076

    CAS  PubMed  Google Scholar 

  28. Fu Y, Cheng WH, Porres JM et al (1999) Knockout of cellular glutathione peroxidase gene renders mice susceptible to diquat-induced oxidative stress. Free Radic Biol Med 27:605–611

    Article  CAS  PubMed  Google Scholar 

  29. Brigelius-Flohe R, Muller M, Lippmann D et al (2012) The yin and yang of nrf2-regulated selenoproteins in carcinogenesis. Int J Cell Biol 2012:1–8

    Article  Google Scholar 

  30. Yant LJ, Ran Q, Rao L et al (2003) The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med 34:496–502

    Article  CAS  PubMed  Google Scholar 

  31. Gereben B, Zavacki AM, Ribich S et al (2008) Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 29:898–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arner ES, Holmgren A (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem 267:6102–6109

    Article  CAS  PubMed  Google Scholar 

  33. Bondareva AA, Capecchi MR, Iverson SV et al (2007) Effects of thioredoxin reductase-1 deletion on embryogenesis and transcriptome. Free Radic Biol Med 43:911–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jakupoglu C, Przemeck GK, Schneider M et al (2005) Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol 25:1980–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chae HZ, Chung SJ, Rhee SG et al (1994) Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 269:27670–27678

    CAS  PubMed  Google Scholar 

  36. Stadtman ER, Moskovitz J, Berlett BS et al (2002) Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism. Mol Cell Biol 234-235:3–9

    Google Scholar 

  37. Stubbe J, Riggs-Gelasco P (1998) Harnessing free radicals: formation and function of the tyrosyl radical in ribonucleotide reductase. Trends Biochem Sci 23:438–443

    Article  CAS  PubMed  Google Scholar 

  38. Rundlof AK, Arner ES (2004) Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype, growth, and signaling events. Antioxid Redox Sign 6:41–52

    Article  Google Scholar 

  39. Dikiy A, Novoselov SV, Fomenko DE et al (2007) SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry 46:6871–6882

    Article  CAS  PubMed  Google Scholar 

  40. Prevost G, Arabo A, Jian L et al (2013) The PACAP-regulated gene selenoprotein T is abundantly expressed in mouse and human beta-cells and its targeted inactivation impairs glucose tolerance. Endocrinology 154:3796–3806

    Article  CAS  PubMed  Google Scholar 

  41. Sengupta A, Carlson BA, Labunskyy VM et al (2009) Selenoprotein T deficiency alters cell adhesion and elevates selenoprotein W expression in murine fibroblast cells. Biochem Cell Biol 87:953–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Loflin J, Lopez N, Whanger PD et al (2006) Selenoprotein W during development and oxidative stress. J Inorg Biochem 100:1679–1684

    Article  CAS  PubMed  Google Scholar 

  43. Liu W, Yao H, Zhao W et al (2016) Selenoprotein W was correlated with the protective effect of selenium on chicken myocardial cells from oxidative damage. Biol Trace Elem Res 171:419–426

    Article  CAS  PubMed  Google Scholar 

  44. Park YH, Jeon YH, Kim IY (2012) Selenoprotein W promotes cell cycle recovery from G2 arrest through the activation of CDC25B. Biochim Biophys Acta 1823:2217–2226

    Article  CAS  PubMed  Google Scholar 

  45. Martin-Romero FJ, Kryukov GV, Lobanov AV et al (2001) Selenium metabolism in drosophila: selenoproteins, selenoprotein mRNA expression, fertility, and mortality. J Biol Chem 276:29798–29804

    Article  CAS  PubMed  Google Scholar 

  46. Panee J, Stoytcheva ZR, Liu W et al (2007) Selenoprotein H is a redox-sensing high mobility group family DNA-binding protein that up-regulates genes involved in glutathione synthesis and phase II detoxification. J Biol Chem 282:23759–23765

    Article  CAS  PubMed  Google Scholar 

  47. Novoselov SV, Kryukov GV, Xu XM et al (2007) Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. J Biol Chem 282:11960–11968

    Article  CAS  PubMed  Google Scholar 

  48. Horibata Y, Hirabayashi Y (2007) Identification and characterization of human ethanolaminephosphotransferase1. J Lipid Res 48:503–508

    Article  CAS  PubMed  Google Scholar 

  49. Gladyshev VN, Jeang KT, Wootton JC et al (1998) A new human selenium-containing protein. Purification, characterization, and cDNA sequence. J Biol Chem 273:8910–8915

    Article  CAS  PubMed  Google Scholar 

  50. Kumaraswamy E, Malykh A, Korotkov KV et al (2000) Structure-expression relationships of the 15-kDa selenoprotein gene. Possible role of the protein in cancer etiology. J Biol Chem 275:35540–35547

    Article  CAS  PubMed  Google Scholar 

  51. Korotkov KV, Kumaraswamy E, Zhou Y et al (2001) Association between the 15-kDa selenoprotein and UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells. J Biol Chem 276:15330–15336

    Article  CAS  PubMed  Google Scholar 

  52. Benelli JL, de Medeiros RM, Matte MC et al (2016) Role of SEP15 Gene polymorphisms in the time of progression to AIDS. Genet Test Mol Biomarkers 20:383–387

    Article  CAS  PubMed  Google Scholar 

  53. Korotkov KV, Novoselov SV, Hatfield DL et al (2002) Mammalian selenoprotein in which selenocysteine (sec) incorporation is supported by a new form of sec insertion sequence element. Mol Cell Biol 22:1402–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reeves MA, Bellinger FP, Berry MJ (2010) The neuroprotective functions of selenoprotein M and its role in cytosolic calcium regulation. Antioxid Redox Sign 12:809–818

    Article  CAS  Google Scholar 

  55. Chen P, Wang RR, Ma XJ et al (2013) Different forms of selenoprotein M differentially affect Abeta aggregation and ROS generation. Int J Mol Sci 14:4385–4399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Curran JE, Jowett JB, Elliott KS et al (2005) Genetic variation in selenoprotein S influences inflammatory response. Nat Genet 37:1234–1241

    Article  CAS  PubMed  Google Scholar 

  57. Shibata T, Arisawa T, Tahara T et al (2009) Selenoprotein S (SEPS1) gene -105G>A promoter polymorphism influences the susceptibility to gastric cancer in the Japanese population. BMC Gastroenterol 9:2

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sutherland A, Kim DH, Relton C et al (2010) Polymorphisms in the selenoprotein S and 15-kDa selenoprotein genes are associated with altered susceptibility to colorectal cancer. Genes Nutr 5:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arbogast S, Ferreiro A (2010) Selenoproteins and protection against oxidative stress: selenoprotein N as a novel player at the crossroads of redox signaling and calcium homeostasis. Antioxid Redox Sign 12:893–904

    Article  CAS  Google Scholar 

  60. Petit N (2003) Selenoprotein N an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum Mol Genet 12:1045–1053

    Article  CAS  PubMed  Google Scholar 

  61. Deniziak M, Thisse C, Rederstorff M et al (2007) Loss of selenoprotein N function causes disruption of muscle architecture in the zebrafish embryo. Exp Cell Res 313:156–167

    Article  CAS  PubMed  Google Scholar 

  62. Jurynec MJ, Xia R, Mackrill JJ et al (2008) Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc Natl Acad Sci U S A 105:12485–12490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tobe R, Carlson BA, Huh JH et al (2016) Selenophosphate synthetase 1 is an essential protein with roles in regulation of redox homoeostasis in mammals. Biochem J 473:2141–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tamura T, Yamamoto S, Takahata M et al (2004) Selenophosphate synthetase genes from lung adenocarcinoma cells: Sps1 for recycling L-selenocysteine and Sps2 for selenite assimilation. Proc Natl Acad Sci U S A 101:16162–16167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reeves MA, Hoffmann PR (2009) The human selenoproteome: recent insights into functions and regulation. Biochem J 66:2457–2478

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31402267), the Heilongjiang Province Science Foundation for Youths (QC2014C015), the Heilongjiang Postdoctoral Fund under Grant LBH-Z13028, the Foundation for Young Talents in Higher Education of Heilongjiang, China under Grant UNPYSCT-2015009, the “Young Talents” Project of Northeast Agricultural University under Grant 14QC20, and the Degree and graduate education teaching reform project in Heilongjiang province (JGXM_HLJ_201676).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziwei Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Yang, J., Cai, J. et al. Analysis of the Interactions Between Thioredoxin and 20 Selenoproteins in Chicken. Biol Trace Elem Res 179, 304–317 (2017). https://doi.org/10.1007/s12011-017-0961-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-0961-y

Keywords

Navigation