Skip to main content
Log in

Evaluation of Long-Term Toxicity of Oral Zinc Oxide Nanoparticles and Zinc Sulfate in Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The toxicological effects of zinc oxide nanoparticles (nano-ZnOs) are related to their dissolution and interference with zinc ion homeostasis. High-soluble zinc sources may produce more severe and acute toxicity; however, the evaluation of potential toxicity of long-term exposure to nano-ZnOs and high-soluble sources of zinc remains obscure. This study aimed at evaluating effects of nano-ZnOs and zinc sulfate on development, serum and hematological parameters, and mineral concentrations in selected tissues and intestinal microbiota in mice via gastrointestinal administration for 7 weeks. Results indicated that 250 mg/kg nano-ZnOs reduced the body weight from weeks 8 to 11, increased serum glutamic-pyruvic transaminase activity, and increased the zinc concentrations of the serum, liver, and kidney while did not affect the relative organ weight, intestinal microbiota, and other mineral concentrations (Fe, Cu, and Mn) in the kidney, liver, and thigh muscle. Oral administration with 250 mg/kg zinc sulfate seemed to show more severe and acute toxicity since mice in zinc sulfate group exhibited reduced body weight from weeks 5 to 11, decreased relative pancreas weight, and increased serum glutamic-oxalacetic transaminase activity and intestinal enteric group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yah CS, Simate GS, Iyuke SE (2012) Nanoparticles toxicity and their routes of exposures. Pak J Pharm Sci 25(2):477–491

    CAS  PubMed  Google Scholar 

  2. Singh S, Nalwa HS (2007) Nanotechnology and health safety—toxicity and risk assessments of nanostructured materials on human health. J Nanosci Nanotechnol 7(9):3048–3070

    Article  CAS  PubMed  Google Scholar 

  3. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V (2006) Safe handling of nanotechnology. Nature 444(7117):267–269

    Article  CAS  PubMed  Google Scholar 

  4. Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles—a review. Environ Pollut 172:76–85

    Article  CAS  PubMed  Google Scholar 

  5. Zhao CY, Tan SX, Xiao XY, Qiu XS, Pan JQ, Tang ZX (2014) Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biol Trace Elem Res 160(3):361–367. doi:10.1007/s12011-014-0052-2

    Article  CAS  PubMed  Google Scholar 

  6. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters 7(3):219–242

    Article  CAS  Google Scholar 

  7. Wang B, Feng W, Wang M, Wang T, Gu Y, Zhu M, Ouyang H, Shi J, Zhang F, Zhao Y (2008) Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10(2):263–276

    Article  CAS  Google Scholar 

  8. Yan G, Huang Y, Bu Q, Lv L, Deng P, Zhou J, Wang Y, Yang Y, Liu Q, Cen X (2012) Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J Environ Sci Health A 47(4):577–588

    Article  CAS  Google Scholar 

  9. Hong JS, Park MK, Kim MS, Lim JH, Park GJ, Maeng EH, Shin JH, Kim MK, Jeong J, Park JA, Kim JC, Shin HC (2014) Prenatal development toxicity study of zinc oxide nanoparticles in rats. Int J Nanomedicine 9(Suppl 2):159–171. doi:10.2147/IJN.S57932

    PubMed  PubMed Central  Google Scholar 

  10. Hong JS, Park MK, Kim MS, Lim JH, Park GJ, Maeng EH, Shin JH, Kim YR, Kim MK, Lee JK, Park JA, Kim JC, Shin HC (2014) Effect of zinc oxide nanoparticles on dams and embryo-fetal development in rats. Int J Nanomedicine 9(Suppl 2):145–157. doi:10.2147/IJN.S57931

    PubMed  PubMed Central  Google Scholar 

  11. Wang L, Wang L, Ding W, Zhang F (2010) Acute toxicity of ferric oxide and zinc oxide nanoparticles in rats. J Nanosci Nanotechnol 10(12):8617–8624

    Article  CAS  PubMed  Google Scholar 

  12. Beckett WS, Chalupa DF, Pauly-Brown A, Speers DM, Stewart JC, Frampton MW, Utell MJ, Huang LS, Cox C, Zareba W (2005) Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study. American Journal of Respiratory & Critical Care Medicine 171(10):1129–1135

    Article  Google Scholar 

  13. Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29(1):69–78

    Article  PubMed  Google Scholar 

  14. Lin W, Xu Y, Huang CC, Ma Y, Shannon KB, Chen DR, Huang YW (2009) Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res 11(1):25–39

    Article  CAS  Google Scholar 

  15. Geiser M, Rothenrutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im HV, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560

    Article  PubMed  PubMed Central  Google Scholar 

  16. George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, Rosenauer A, Damoiseaux R, Bradley KA, Mädler L (2010) Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4(1):15–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kao YY, Chen YC, Cheng TJ, Chiung YM, Liu PS (2012) Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicological Sciences An Official Journal of the Society of Toxicology 125(2):462–472

    Article  CAS  PubMed  Google Scholar 

  18. Wang C, Lu JJ, Zhou L, Li J, Xu JM, Li WJ, Zhang LL, Zhong X, Wang T (2016) Effects of long-term exposure to zinc oxide nanoparticles on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, Mn) in mice. PLoS One. doi:10.1371/journal.pone.06164434

    Google Scholar 

  19. Demirbaş A (1999) Proximate and heavy metal composition in chicken meat and tissues. Food Chem 67(1):27–31

    Article  Google Scholar 

  20. Xie P, Wang Y, Wang C, Yuan C, Zou X (2013) Effect of different fat sources in parental diets on growth performance, villus morphology, digestive enzymes and colorectal microbiota in pigeon squabs. Arch Anim Nutr 67(2):147–160

    Article  CAS  PubMed  Google Scholar 

  21. Vaahtovuo J, Korkeamaki M, Munukka E, Mk TP (2005) Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry. J Microbiol Methods 63(3):276–286

    Article  CAS  PubMed  Google Scholar 

  22. Abdelghani Sghir GG, Suau A, Rochet V, Pochart P, Dore J (2000) Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Applied & Environmental Microbiology 66(5):2263–2266

    Article  Google Scholar 

  23. Langendijk PS, Schut F, Jansen GJ, Raangs GC, Kamphuis GR, Wilkinson MH, Welling GW (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probe and its application in fecal samples. Applied & Environmental Microbiology 61(8):3069–3075

    CAS  Google Scholar 

  24. Smith J, Tokach M, Goodband R, Nelssen J, Richert B (1997) Effects of the interrelationship between zinc oxide and copper sulfate on growth performance of early-weaned pigs. J Anim Sci 75(7):1861–1866

    Article  CAS  PubMed  Google Scholar 

  25. Case C, Carlson M (2002) Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs. J Anim Sci 80(7):1917–1924

    Article  CAS  PubMed  Google Scholar 

  26. Hu CH, Song ZH, Xiao K, Song J, Jiao le F, Ke YL (2014) Zinc oxide influences intestinal integrity, the expressions of genes associated with inflammation and TLR4-myeloid differentiation factor 88 signaling pathways in weanling pigs. Innate immunity 20(5):478–486. doi:10.1177/1753425913499947

    Article  PubMed  Google Scholar 

  27. Wang Y, Tang JW, Ma WQ, Feng J, Feng J (2009) Dietary zinc glycine chelate on growth performance, tissue mineral concentrations, and serum enzyme activity in weanling piglets. Biol Trace Elem Res 133(3):325–334

    Article  PubMed  Google Scholar 

  28. Wahab R, Dwivedi S, Umar A, Singh S, Hwang IH, Shin HS, Musarrat J, Al-Khedhairy AA, Kim YS (2013) ZnO nanoparticles induce oxidative stress in Cloudman S91 melanoma cancer cells. J Biomed Nanotechnol 9(3):441–449

    Article  CAS  PubMed  Google Scholar 

  29. Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Alkhedhairy AA (2014) Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One 9(11):e111289–e111289

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bailey SA, Zidell RH, Perry RW (2004) Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicol Pathol 32(4):448–466

    Article  PubMed  Google Scholar 

  31. Andersen H, Larsen S, Spliid H, Christensen ND (1999) Multivariate statistical analysis of organ weights in toxicity studies. Toxicology 136(2–3):67–77

    Article  CAS  PubMed  Google Scholar 

  32. Hadley JA, Fowler DR (2003) Organ weight effects of drowning and asphyxiation on the lungs, liver, brain, heart, kidneys, and spleen. Forensic Sci Int 133(3):190–196

    Article  PubMed  Google Scholar 

  33. Jo E, Seo G, Kwon JT, Lee M, Lee B, Eom I, Kim P, Choi K (2013) Exposure to zinc oxide nanoparticles affects reproductive development and biodistribution in offspring rats. J Toxicol Sci 38(4):525–530

    Article  CAS  PubMed  Google Scholar 

  34. Ko JW, Hong ET, Lee IC, Park SH, Park JI, Seong NW, Hong JS, Yun HI, Kim JC (2015) Evaluation of 2-week repeated oral dose toxicity of 100 nm zinc oxide nanoparticles in rats. Laboratory Animal Research 31(3):139–147

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang B, Feng WY, Wang TC, Jia G, Wang M, Shi JW, Zhang F, Zhao YL, Chai ZF (2006) Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett 161(2):115–123

    Article  CAS  PubMed  Google Scholar 

  36. Piao F, Yokoyama K, Ma N, Yamauchi T (2003) Subacute toxic effects of zinc on various tissues and organs of rats. Toxicol Lett 145(1):28–35

    Article  CAS  PubMed  Google Scholar 

  37. Sharma V, Singh P, Pandey AK, Dhawan A (2012) Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 745(1):84–91

    Article  CAS  Google Scholar 

  38. Llobet JM, Domingo JL, Colomina MT, Mayayo E, Corbella J (1988) Subchronic oral toxicity of zinc in rats. Bulletin of Environmental Contamination & Toxicology 41(1):36–43

    Article  CAS  Google Scholar 

  39. Latimer KS, Jain AV, Inglesby HB, Clarkson WD, Johnson GB (1989) Zinc-induced anemia caused by ingestion of pennies by a pup. J Am Vet Med Assoc 195(1):77–80

    CAS  PubMed  Google Scholar 

  40. Van Campen DR, Scaife PU (1967) Zinc interference with copper absorption in rats. J Nutr 91(4):473–476

    CAS  PubMed  Google Scholar 

  41. Kruijsenjaarsma M, Révész D, Bierings MB, Buffart LM, Takken T (2013) Effects of exercise on immune function in patients with cancer: a systematic review. Exerc Immunol Rev 19(1):120–143

    Google Scholar 

  42. Schell T, Kornegay E (1996) Zinc concentration in tissues and performance of weanling pigs fed pharmacological levels of zinc from ZnO, Zn-methionine, Zn-lysine, or ZnSO4. J Anim Sci 74(7):1584–1593

    Article  CAS  PubMed  Google Scholar 

  43. Wang C, Xie P, Liu LL, Lu JJ, Zou XT (2013) Effects of dietary capsulated zinc oxide on growth performance, blood metabolism and mineral concentrations in weaning piglets. Asian Journal of Animal & Veterinary Advances 8(3):502–510

    Article  CAS  Google Scholar 

  44. Bäckhed F, Gordon JI (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104(3):979–984

    Article  PubMed  PubMed Central  Google Scholar 

  45. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vaahtovuo J, Korkeamäki M, Munukka E, Hämeenoja P, Vuorenmaa J (2007) Microbial balance index—a view on the intestinal microbiota. Livest Sci 109(1–3):174–178

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Hangzhou King Techina Technology Co., Ltd and by the Open Fund Project in Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health (Grant No. 2015js02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Wang.

Ethics declarations

Experiments were approved and conducted under the supervision of the Institutional Animal Care and Use Committee of Nanjing Agriculture University, China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Cheng, K., Zhou, L. et al. Evaluation of Long-Term Toxicity of Oral Zinc Oxide Nanoparticles and Zinc Sulfate in Mice. Biol Trace Elem Res 178, 276–282 (2017). https://doi.org/10.1007/s12011-017-0934-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-0934-1

Keywords

Navigation