Advertisement

Biological Trace Element Research

, Volume 178, Issue 1, pp 105–116 | Cite as

Nanoselenium Supplementation of Heat-Stressed Broilers: Effects on Performance, Carcass Characteristics, Blood Metabolites, Immune Response, Antioxidant Status, and Jejunal Morphology

  • Morteza Safdari-Rostamabad
  • Seyyed Javad Hosseini-VashanEmail author
  • Ali Hossein Perai
  • Hadi Sarir
Article

Abstract

An experiment was conducted to investigate the effects of dietary nanoselenium supplementation at 0, 0.6 and 1.2 mg/kg of diet on growth performance, serum biochemical parameters, immune response, antioxidant capacity, and jejunal morphology of 29-d-old male broilers subjected to heat stress at 37 ± 1°C for 14 d. Broilers were fed for 42 d on the experimental diets. The results showed that nanoselenium supplementation had no effect on growth performance, but it supplementation at the rate of 1.2 mg/kg diet decreased the serum concentration of cholesterol prior to the heat exposure. Further, dietary nanoselenium supplementation linearly increased the high-density lipoprotein cholesterol concentration, while linearly decreased those of low-density lipoprotein cholesterol and aspartate aminotransferase in the serum before applying heat stress. Compared with thermoneutral temperature, heat stress reduced body mass gain, feed intake, percentages of carcass, breast, leg, abdominal fat, bursa of Fabricius, thymus, antibody response against sheep red blood cells, serum concentration of protein, erythrocyte activities of glutathione peroxidase and superoxide dismutase, jejunal villus height, and villus height to crypt depth ratio, while increased feed conversion ratio, percentages of liver, gizzard, pancreas, gallbladder, heart, and the concentrations of aspartate aminotransferase and malondialdehyde. Dietary supplementation of nanoselenium linearly reduced the abdominal fat and liver percentages, while linearly increased the activity of glutathione peroxidase and villus height in heat-stressed broilers. Furthermore, the lower level of nanoselenium decreased the percentages of gizzard and heart in broilers under heat stress. The diet supplemented with 1.2 mg/kg nanoselenium improved feed conversion ratio and increased antibody response against sheep red blood cells, activity of superoxide dismutase, and villus height to crypt depth ratio, but decreased the serum concentrations of cholesterol, low-density lipoprotein cholesterol, and malondialdehyde in heat-stressed broilers. The results suggest that supplemental nanoselenium improved growth performance, internal organs health, immune response, and jejunal morphology by alleviating the oxidative stress induced by heat stress.

Keywords

Broilers Heat stress Nanoselenium Immune response Antioxidant status Jejunal morphology 

Notes

Acknowledgments

The authors would like to thank the Birjand University for financial support of this research.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

References

  1. 1.
    Renaudeau D, Collin A, Yahav S, De Basilio V, Gourdine J, Collier R (2012) Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6:707–728. doi: 10.1017/S1751731111002448 CrossRefPubMedGoogle Scholar
  2. 2.
    Habibian M, Ghazi S, Moeini MM, Abdolmohammadi A (2014) Effects of dietary selenium and vitamin E on immune response and biological blood parameters of broilers reared under thermoneutral or heat stress conditions. Int J Biometeorol 58:741–752. doi: 10.1007/s00484-013-0654-y CrossRefPubMedGoogle Scholar
  3. 3.
    Hosseini-Vashan S, Golian A, Yaghobfar A (2015) Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace. Int J Biometeorol. doi: 10.1007/s00484-015-1112-9 PubMedGoogle Scholar
  4. 4.
    Perai AH, Kermanshahi H, Nassiri Moghaddam H, Zarban A (2015) Effects of chromium and chromium + vitamin C combination on metabolic, oxidative, and fear responses of broilers transported under summer conditions. Int J Biometeorol 59:453–462. doi: 10.1007/s00484-014-0860-2 CrossRefPubMedGoogle Scholar
  5. 5.
    Mehdi Y, Hornick JL, Istasse L, Dufrasne I (2013) Selenium in the environment, metabolism and involvement in body functions. Molecules 18:3292–3311. doi: 10.3390/molecules18033292 CrossRefPubMedGoogle Scholar
  6. 6.
    Cantor AH, Moorhead PD, Musser MA (1982) Comparative effects of sodium selenite and selenomethionine upon nutritional muscular dystrophy, selenium-dependent glutathione peroxidase, and tissue selenium concentrations of turkey poults. Poult Sci 61:478–484. doi: 10.3382/ps.0610478 CrossRefPubMedGoogle Scholar
  7. 7.
    Fischer J, Bosse A, Pallauf J (2008) Effect of selenium deficiency on the antioxidative status and muscle damage in growing turkeys. Arch Anim Nutr 62:485–497. doi: 10.1080/17450390802453468 CrossRefPubMedGoogle Scholar
  8. 8.
    Mohapatra P, Swain RK, Mishra SK, Behera T, Swain P, Mishra SS, Behura NC, Sabat SC, Sethy K, Dhama K, Jayasankar P (2014) Effects of dietary nano-selenium on tissue selenium deposition, antioxidant status and immune functions in layer chicks. Int J Pharmacol 10:160–167CrossRefGoogle Scholar
  9. 9.
    Yu J, Yao H, Gao X, Zhang Z, Wang JF, Xu SW (2015) The role of nitric oxide and oxidative stress in intestinal damage induced by selenium deficiency in chickens. Biol Trace Elem Res 163:144–153. doi: 10.1007/s12011-014-0164-8 CrossRefPubMedGoogle Scholar
  10. 10.
    Huang JQ, Ren FZ, Jiang YY, Xiao C, Lei XG (2015) Selenoproteins protect against avian nutritional muscular dystrophy by metabolizing peroxides and regulating redox/apoptotic signaling. Free Radic Biol Med 83:129–138. doi: 10.1016/j.freeradbiomed.2015.01.033 CrossRefPubMedGoogle Scholar
  11. 11.
    Yang Z, Liu C, Zheng W, Teng X, Li S (2016) The functions of antioxidants and heat shock proteins are altered in the immune organs of selenium-deficient broiler chickens. Biol Trace Elem Res 169:341–351. doi: 10.1007/s12011-015-0407-3 CrossRefPubMedGoogle Scholar
  12. 12.
    Temim S, Chagneau AM, Peresson R, Tesseraud S (2000) Chronic heat exposure alters protein turnover of three different skeletal muscles in finishing broiler chickens fed 20 or 25% protein diets. J. Nutr 130:813–819PubMedGoogle Scholar
  13. 13.
    Sahin K, Sahin N, Kucuk O, Hayirli A, Prasad AS (2009) Role of dietary zinc in heat-stressed poultry: a review. Poult Sci 88:2176–2183. doi: 10.3382/ps.2008-00560 CrossRefPubMedGoogle Scholar
  14. 14.
    Lymbury RS, Marino MJ, Perkins AV (2010) Effect of dietary selenium on the progression of heart failure in the ageing spontaneously hypertensive rat. Mol Nutr Food Res 54:1436–1444. doi: 10.1002/mnfr.201000012 CrossRefPubMedGoogle Scholar
  15. 15.
    Liu LL, He JH, Xie HB, Yang YS, Li JC, Zou Y (2014) Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens. Poult. Sci. 93:54–62. doi: 10.3382/ps.2013-03423 CrossRefPubMedGoogle Scholar
  16. 16.
    Lyons MP, Papazyan TT, Surai PF (2007) Selenium in food chain and animal nutrition: Lessons from nature. Asian Australas J Anim Sci 20:1135–1155. doi: 10.5713/ajas.2007.1135 CrossRefGoogle Scholar
  17. 17.
    NRC (1994) Nutrient requirement for poultry, 9th edn. National Academies Press, Washington, DC, p. 62Google Scholar
  18. 18.
    Wang Y (2009) Differential effects of sodium selenite and nano-Se on growth performance, tissue Se distribution, and glutathione peroxidase activity of avian broiler. Biol Trace Elem Res 128:184–190. doi: 10.1007/s12011-008-8264-y CrossRefPubMedGoogle Scholar
  19. 19.
    Rahimi S, Farhadi D, Valipouri AR (2011) Effect of organic and inorganic selenium sources and vitamin E on broiler performance and carcass characteristics in heat stress condition. Vet J 91:25–35Google Scholar
  20. 20.
    Boostani A, Sadeghi AA, Mousavi SN, Chamani M, Kashan N (2015) Effects of organic, inorganic, and nano-Se on growth performance, antioxidant capacity, cellular and humoral immune responses in broiler chickens exposed to oxidative stress. Livest Sci 178:330–336. doi: 10.1016/j.livsci.2015.05.004 CrossRefGoogle Scholar
  21. 21.
    Hu CH, Li YL, Xiong L, Zhang HM, Song J, Xia MS (2012) Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim Feed Sci Technol 177:204–210. doi: 10.1016/j.anifeedsci.2012.08.010 CrossRefGoogle Scholar
  22. 22.
    da Silva IC, Ribeiro AM, Canal CW, Trevizan L, Macagnan M, Gonçalves TA, Hlavac NR, De Almeida LL, Pereira RA (2010) The impact of organic and inorganic selenium on the immune system of growing broilers submitted to immune stimulation and heat stress. Revista Brasileira de Ciência Avícola 12:247–254. doi: 10.1590/S1516-635X2010000400005 CrossRefGoogle Scholar
  23. 23.
    Niu Z, Liu F, Yan Q, Li L (2009) Effects of different levels of selenium on growth performance and immunocompetence of broilers under heat stress. Arch Anim Nutr 63:56–65. doi: 10.1080/17450390802611610 CrossRefPubMedGoogle Scholar
  24. 24.
    Nelson N, Lakshmanan N, Lamont S (1995) Sheep red blood cell and Brucella abortus antibody responses in chickens selected for multitrait immunocompetence. Poult Sci 74:1603–1609. doi: 10.3382/ps.0741603 CrossRefPubMedGoogle Scholar
  25. 25.
    Yoshioka T, Kawada K, Shimada T, Mori M (1979) Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. Am J Obstet Gynecol 135:372–376. doi: 10.1016/0002-9378(79)90708-7 CrossRefPubMedGoogle Scholar
  26. 26.
    Hajati H, Hassanabadi A, Golian AG, Nassiri-Moghaddam H, Nassiri MR (2015) The effect of grape seed extract and vitamin c feed supplements carcass characteristics, gut morphology and ileal microflora in broiler chickens exposed to chronic heat stress. Iran J Appl Anim Sci 5(1):155–165Google Scholar
  27. 27.
    Cai SJ, Wu CX, Gong LM, Song T, Wu H, Zhang LY (2012) Effects of nano-selenium on performance, meat quality, immune function, oxidation resistance, and tissue selenium content in broilers. Poult Sci 91:2532–2539. doi: 10.3382/ps.2012-02160 CrossRefPubMedGoogle Scholar
  28. 28.
    Liu S, Tan H, Wei S, Zhao J, Yang L, Li S, Zhong C, Yin Y, Chen Y, Peng Y (2015) Effect of selenium sources on growth performance and tissue selenium retention in yellow broiler chicks. J Appl Anim Res 43:487–490. doi: 10.1080/09712119.2014.978780 CrossRefGoogle Scholar
  29. 29.
    Zhou X, Wang Y (2011) Influence of dietary nano elemental selenium on growth performance, tissue selenium distribution, meat quality, and glutathione peroxidase activity in Guangxi Yellow chicken. Poult Sci 90:680–686. doi: 10.3382/ps.2010-00977 CrossRefPubMedGoogle Scholar
  30. 30.
    Thomson C (1998) Selenium speciation in human body fluids. Analyst 123:827–831. doi: 10.1039/A707292I CrossRefPubMedGoogle Scholar
  31. 31.
    Surai P (2016) Antioxidant Systems in Poultry Biology: Superoxide Dismutase. J Anim Nutr 1(1):8Google Scholar
  32. 32.
    Lambert GP (2009) Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. J Anim Sci 87(E. Suppl):E101–E108. doi: 10.2527/jas.2008-1339 CrossRefPubMedGoogle Scholar
  33. 33.
    Liu L, Fu C, Yan M, Xie H, Li S, Yu Q, He S, He J (2016) Resveratrol modulates intestinal morphology and jejunal mucosa HSP70/90, NF-κB and EGF expression in black-boned chicken exposure to circular heat stress. Food Funct 7:1329–1338. doi: 10.1039/C5FO01338K CrossRefPubMedGoogle Scholar
  34. 34.
    Pigeolet E, Corbisier P, Houbion A, Lambert D, Michiels C, Raes M, Zachary MD, Remacle J (1990) Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals. Mech Ageing Dev 51:283–297. doi: 10.1016/0047-6374(90)90078-T CrossRefPubMedGoogle Scholar
  35. 35.
    Hermier D (1997) Lipoprotein metabolism and fattening in poultry. J Nutr 127:805S–808SPubMedGoogle Scholar
  36. 36.
    Sands J, Smith M (1999) Broilers in heat stress conditions: effects of dietary manganese proteinate or chromium picolinate supplementation. J Appl Poult Res 8:280–287. doi: 10.1093/japr/8.3.280 CrossRefGoogle Scholar
  37. 37.
    Dai S, Gao F, Zhang W, Song S, Xu X, Zhou G (2011) Effects of dietary glutamine and gamma-aminobutyric acid on performance, carcass characteristics and serum parameters in broilers under circular heat stress. Anim Feed Sci Technol 168:51–60. doi: 10.1016/j.anifeedsci.2011.03.005 CrossRefGoogle Scholar
  38. 38.
    Kim JE, Choi SI, Lee HR, Hwang IS, Lee YJ, An BS, Lee SH, Kim HJ, Kang BC, Hwang DY (2012) Selenium significantly inhibits adipocyte hypertrophy and abdominal fat accumulation in OLETF rats via induction of fatty acid β-oxidation. Biol Trace Elem Res 150:360–370. doi: 10.1007/s12011-012-9519-1 CrossRefPubMedGoogle Scholar
  39. 39.
    Kim CY, Kim GN, Wiacek JL, Chen CY, Kim KH (2012) Selenate inhibits adipogenesis through induction of transforming growth factor-β1 (TGF-β1) signaling. Biochem Biophys Res Commun 426:551–557. doi: 10.1016/j.bbrc.2012.08.125 CrossRefPubMedGoogle Scholar
  40. 40.
    Lu Q, Wen J, Zhang H (2007) Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poult Sci 86:1059–1064. doi: 10.1093/ps/86.6.1059 CrossRefPubMedGoogle Scholar
  41. 41.
    Tanguy S, Grauzam S, De Leiris J, Boucher F (2012) Impact of dietary selenium intake on cardiac health: experimental approaches and human studies. Mol Nutr Food Res 56:1106–1121. doi: 10.1002/mnfr.201100766 CrossRefPubMedGoogle Scholar
  42. 42.
    Bashir N, Manoharan V, Miltonprabu S (2016) Grape seed proanthocyanidins protects against cadmium induced oxidative pancreatitis in rats by attenuating oxidative stress, inflammation and apoptosis via Nrf-2/HO-1 signaling. J Nutr Biochem 32:128–141. doi: 10.1016/j.jnutbio.2016.03.001 CrossRefPubMedGoogle Scholar
  43. 43.
    Hai L, Rong D, Zhang ZY (2000) The effect of thermal environment on the digestion of broilers. J. Anim. Physiol. Anim Nutr 83:57–64. doi: 10.1046/j.1439-0396.2000.00223.x CrossRefGoogle Scholar
  44. 44.
    Thompson JN, Scott ML (1970) Impaired lipid and vitamin E absorption related to atrophy of the pancreas in selenium-deficient chicks. J Nutr 100:797–809PubMedGoogle Scholar
  45. 45.
    Li JL, Li HX, Li S, Jiang ZH, Xu SW, Tang ZX (2011) Selenoprotein W gene expression in the gastrointestinal tract of chicken is affected by dietary selenium. Biometals 24:291–299. doi: 10.1007/s10534-010-9395-0 CrossRefPubMedGoogle Scholar
  46. 46.
    Selim NA, Radwan NL, Youssef SF, Eldin TS, Elwafa SA (2015) Effect of Inclusion Inorganic, Organic or Nano Selenium Forms in Broiler Diets On: 2-Physiological, Immunological and Toxicity Statuses of Broiler Chicks. Int J Poult Sci 14:144–155CrossRefGoogle Scholar
  47. 47.
    Liu CP, Fu J, Xu FP, Wang XS, Li S (2015) The role of heat shock proteins in oxidative stress damage induced by Se deficiency in chicken livers. Biometals 28:163–173. doi: 10.1007/s10534-014-9812-x CrossRefPubMedGoogle Scholar
  48. 48.
    Amin KA, Hashem KS, Alshehri FS, Awad ST, Hassan MS (2016) Antioxidant and Hepatoprotective Efficiency of Selenium Nanoparticles Against Acetaminophen-Induced Hepatic Damage. Biol Trace Elem Res. doi: 10.1007/s12011-016-0748-6 PubMedGoogle Scholar
  49. 49.
    Imik H, Kaynar O, Ozkanlar S, Gumus R, Polat H, Ozkanlar Y (2013) Effects of vitamin C and α-lipoid acid dietary supplementations on metabolic adaptation of broilers to heat stress. Rev Méd Vét 164:52–59Google Scholar
  50. 50.
    Nassir F, Moundras C, Bayle D, Serougne C, Gueux E, Rock E, Rayssiguier Y, Mazur A (1997) Effect of selenium deficiency on hepatic lipid and lipoprotein metabolism in the rat. Br J Nutr 78:493–500. doi: 10.1079/BJN19970166 CrossRefPubMedGoogle Scholar
  51. 51.
    Dhingra S, Bansal MP (2006) Modulation of hypercholesterolemia-induced alterations in apolipoprotein B and HMG-CoA reductase expression by selenium supplementation. Chem Biol Interact 161:49–56. doi: 10.1016/j.cbi.2006.02.008 CrossRefPubMedGoogle Scholar
  52. 52.
    Ness GC, Pendleton LC, Li YC, Chiang JY (1990) Effect of thyroid hormone on hepatic cholesterol 7α hydroxylase, LDL receptor, HMG-CoA reductase, farnesyl pyrophosphate synthetase and apolipoprotein AI mRNA levels in hypophysectomized rats. Biochem Biophys Res Commun 172:1150–1156. doi: 10.1016/0006-291X(90)91568-D CrossRefPubMedGoogle Scholar
  53. 53.
    Dhingra S, Bansal MP (2006) Hypercholesterolemia and LDL receptor mRNA expression: modulation by selenium supplementation. Biometals 19:493–501. doi: 10.1007/s10534-005-5393-z CrossRefPubMedGoogle Scholar
  54. 54.
    Hossain MS, Afrose S, Takeda I, Tsujii H (2010) Effect of selenium-enriched Japanese radish sprouts and Rhodobacter capsulatus on the cholesterol and immune response of laying hens. Asian Australas J Anim Sci 23:630–639. doi: 10.5713/ajas.2010.90394 CrossRefGoogle Scholar
  55. 55.
    Mashaly M, Hendricks G, Kalama M, Gehad A, Abbas A, Patterson P (2004) Effect of heat stress on production parameters and immune responses of commercial laying hens. Poult Sci 83:889–894. doi: 10.1093/ps/83.6.889 CrossRefPubMedGoogle Scholar
  56. 56.
    Xu D, Tian Y (2015) Selenium and polysaccharides of Atractylodes macrocephala koidz play different roles in improving the immune response induced by heat stress in chickens. Biol Trace Elem Res 168:235–241. doi: 10.1007/s12011-015-0351-2 CrossRefPubMedGoogle Scholar
  57. 57.
    Liao X, Lu L, Li S, Liu S, Zhang L, Wang G, Li A, Luo X (2012) Effects of selenium source and level on growth performance, tissue selenium concentrations, antioxidation, and immune functions of heat-stressed broilers. Biol Trace Elem Res 150:158–165. doi: 10.1007/s12011-012-9517-3 CrossRefPubMedGoogle Scholar
  58. 58.
    Placha I, Takacova J, Ryzner M, Cobanova K, Laukova A, Strompfova V, Venglovska K, Faix S (2014) Effect of thyme essential oil and selenium on intestine integrity and antioxidant status of broilers. Br Poult Sci 55:105–114. doi: 10.1080/00071668.2013.873772 CrossRefPubMedGoogle Scholar
  59. 59.
    Rama Rao SV, Prakash B, Raju MVLN, Panda AK, Poonam NS, Murthy OK (2013) Effect of supplementing organic selenium on performance, carcass traits, oxidative parameters and immune responses in commercial broiler chickens. Asian Australas J Anim Sci 26:247–252. doi: 10.5713/ajas.2012.12299 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Morteza Safdari-Rostamabad
    • 1
  • Seyyed Javad Hosseini-Vashan
    • 1
    Email author
  • Ali Hossein Perai
    • 2
  • Hadi Sarir
    • 1
  1. 1.Department of Animal Science, Faculty of AgricultureUniversity of BirjandBirjandIran
  2. 2.Department of Animal Science, College of Agriculture and Natural ResourcesRazi UniversityKermanshahIran

Personalised recommendations