Skip to main content

Advertisement

Log in

Effect of Gestational Intake of Fisetin (3,3′,4′,7-Tetrahydroxyflavone) on Developmental Methyl Mercury Neurotoxicity in F1 Generation Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Methyl mercury (MeHg) is a developmental neurotoxin that causes irreversible cognitive damage in offspring of gestationally exposed mothers. Currently, no preventive drugs are established against MeHg developmental neurotoxicity. The neuroprotective effect of gestational administration of a flavanoid against in utero toxicity of MeHg is not explored much. Hence, the present study validated the effect of a bioactive flavanoid, fisetin, on MeHg developmental neurotoxicity outcomes in rat offspring at postnatal weaning age. Pregnant Wistar rats were simultaneously given MeHg (1.5 mg/kg b.w.) and two doses of fisetin (10 and 50 mg/kg b.w. in two separate groups) orally from gestational day (GD) 5 till parturition. Accordingly, after parturition, on postnatal day (PND) 24, weaning F1 generation rats were studied for motor and cognitive behavioural changes. Biochemical and histopathological changes were also studied in the cerebral cortex, cerebellum and hippocampus on PND 25. Administration of fisetin during pregnancy prevented behavioural impairment due to transplacental MeHg exposure in weaning rats. Fisetin decreased the levels of oxidative stress markers, increased enzymatic and non-enzymatic antioxidant levels and increased the activity of membrane-bound ATPases and cholinergic function in F1 generation rats. In light microscopic studies, fisetin treatment protected the specific offspring brain regions from significant morphological aberrations. Between the two doses of fisetin studied, 10 mg/kg b.w. was found to be more satisfactory and effective than 50 mg/kg b.w. The present study shows that intake of fisetin during pregnancy in rats ameliorated in utero MeHg exposure-induced neurotoxicity outcomes in postnatal weaning F1 generation rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sheehan MC, Burke TA, Navas-Acien A, Breysse PN, McGready J, Fox MA (2014) Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bull World Health Organ 92:254–269

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gary J, Myers PW, Davidson WGE, Van EW, Thurston SW, Strain JJ, Shamlaye CF, Bovetd P (2014) Methylmercury exposure and developmental neurotoxicity. Bull World Health Organ 93(2):132

    Google Scholar 

  3. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351

    Article  CAS  PubMed  Google Scholar 

  4. Johnson CL (2004) Mercury in the environment: sources, toxicities, and prevention of exposure. Pediatr Ann 33:437–442

    Article  PubMed  Google Scholar 

  5. Matsumoto H, Koya G, Takeuchi T (1965) Fetal Minamata disease. A neuropathological study of two cases of intrauterine intoxication by a methyl mercury compound. J Neuropathol Exp Neurol 24:563–574

    Article  CAS  PubMed  Google Scholar 

  6. Choi BH, Lapham LW, Amin-Zaki L, Saleem T (1978) Abnormal neuronal migration, deranged cerebral cortical organization, and diffuse white matter astrocytosis of human fetal brain: a major effect of methylmercury poisoning in utero. J Neuropathol Exp Neurol 37:719–733

    Article  CAS  PubMed  Google Scholar 

  7. Takeuchi T (1982) Pathology of Minamata disease. With special reference to its pathogenesis. Acta Pathol Jpn 32(Suppl 1):73–99

    PubMed  Google Scholar 

  8. Myers GJ, Marsh DO, Davidson PW, Cox C, Shamlaye CF, Tanner M, Choi A, Cernichiari E, Choisy O, Clarkson TW (1995) Main neurodevelopmental study of Seychellois children following in utero exposure to methylmercury from a maternal fish diet: outcome at six months. Neurotoxicology 16:653–664

    CAS  PubMed  Google Scholar 

  9. Van WE, Thurston SW, Myers GJ, Strain JJ, Weiss B, Zarcone T, Watson GE, Zareba G, McSorley EM, Mulhern MS, Yeates AJ, Henderson J, Gedeon J, Shamlaye CF, Davidson PW (2013) Prenatal methyl mercury exposure in relation to neurodevelopment and behavior at 19 years of age in the Seychelles Child Development Study. Neurotoxicol Teratol 39:19–25

    Article  Google Scholar 

  10. Aschner M, Syversen T, Souza DO, Rocha JB, Farina M (2007) Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz J Med Biol Res 40:285–291

    Article  CAS  PubMed  Google Scholar 

  11. Halliwell B (1992) Oxygen radicals as key mediators in neurological disease: fact or fiction? Ann Neurol 32:10–15

    Article  Google Scholar 

  12. Mori N, Yasutake A, Hirayama K (2007) Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Arch Toxicol 81:769–776

    Article  CAS  PubMed  Google Scholar 

  13. Franco JL, Braga HC, Stringari J, Missau FC, Posser T, Mendes BG, Leal RB, Santos AR, Dafre AL, Pizzolatti MG, Farina M (2007) Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: protective effects of quercetin. Chem Res Toxicol 20:1919–1926

    Article  CAS  PubMed  Google Scholar 

  14. Mari M, Morales M, Colell A, García-Ruiz C, Jose C, Fernández-Checa (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11:2685–2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Farina M, Rocha JBT, Aschner M (2011) Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci 89:555–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stringari J, Nunes AK, Franco JL, Bohrer D, Garcia SC, Dafre AL, Milatovic D, Souza DO, Rocha JB, Aschner M, Farina M (2008) Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol 227:147–154

    Article  CAS  PubMed  Google Scholar 

  17. Mynett-Johnson L, Murphy V, McCormack J, Shields DC, Claffey E, Manley P, McKeon P (1998) Evidence for an allelic association between bipolar disorder and Na+, K+ adenosine triphosphatase alpha subunit gene (ATP1A3). Biol Psychiatry 44:47–51

    Article  CAS  PubMed  Google Scholar 

  18. Wood AJ, Elphick M, Grahame-Smith DG (1989) Effect of lithium and of other drugs used in the treatment of manic illness on the cation-transporting properties of Na+, K+-ATPase in mouse brain synaptosomes. J Neurochem 52:1042–1049

    Article  CAS  PubMed  Google Scholar 

  19. Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71

    Article  CAS  PubMed  Google Scholar 

  20. Carageorgiou H, Pantos C, Zarros A, Stolakis V, Mourouzis I, Cokkinos D, Tsakiris S (2007) Changes in acetylcholinesterase, Na+K+ ATPase, and Mg2+ ATPase activities in the frontal cortex and the hippocampus of hyper and hypothyroid adult rats. Metab Clin Exp 56:1104–1110

    Article  CAS  PubMed  Google Scholar 

  21. Chiu VC, Mouring D, Haynes DH (1983) Action of mercurials on the active and passive transport properties of sarcoplasmic reticulum. J Bioenerg Biomembr 15:13–25

    Article  CAS  PubMed  Google Scholar 

  22. Freitas AJ, Rocha JB, Wolosker H, Souza DO (1996) Effects of Hg2+ and CH3Hg+ on Ca2+ fluxes in rat brain microsomes. Brain Res 738:257–264

    Article  CAS  PubMed  Google Scholar 

  23. Haynes DH (1983) Mechanism of Ca2+ transport by Ca2+-Mg2+-ATPase pump: analysis of major states and pathways. Am J Phys 244:G3–12

    CAS  Google Scholar 

  24. Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Annu Rev Psychol 48:649–684

    Article  CAS  PubMed  Google Scholar 

  25. Carageorgiou H, Tzotzes V, Sideris A, Zarros A, Tsakiris S (2005) Cadmium effects on brain acetylcholinesterase activity and antioxidant status of adult rats: modulation by zinc, calcium and L-cysteine co-administration. Basic Clin Pharmacol Toxicol 97:320–324

    Article  CAS  PubMed  Google Scholar 

  26. Appleyard ME (1995) Acetylcholinesterase induced long-term potentiation in CA1 pyramidal cells by a mechanism dependent on metabotropic glutamate receptors. Neurosci Lett 190:25–28

    Article  CAS  PubMed  Google Scholar 

  27. Petruccioli L, Turillazzi P (1991) Effect of methylmercury on acetylcholinesterase and serum cholinesterase activity in monkeys, Macaca fascicularis. Bull Environ Contam Toxicol 46:769–773

    Article  CAS  PubMed  Google Scholar 

  28. Wootten V, Brown DR, Callahan BG, Vetrano K, Wadman P, Melia J, Mulligan T, Schatz RA (1985) Behavioral and biochemical alterations following in utero exposure to methylmercury. Neurobehav Toxicol Teratol 7:767–773

    CAS  PubMed  Google Scholar 

  29. Flora SJ (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative Med Cell Longev 2:191–206

    Article  Google Scholar 

  30. Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34

    Article  CAS  PubMed  Google Scholar 

  31. Deeba N, Syed Vaqar M, Adhami M, Khan I, Mukhtar H (2013) Inhibition of Akt/mTOR signaling by the dietary flavonoid fisetin. Anti Cancer Agents Med Chem 13:995–1001

    Article  Google Scholar 

  32. Zhen L, Zhu J, Zhao X, Wu H, An Y, Li S, Du X, Lin M, Wang Q, Xu Y, Pan J (2012) The antidepressant like effect of fisetin involves the serotonergic and noradrenergic system. Behav Brain Res 228:359–366

    Article  CAS  PubMed  Google Scholar 

  33. Amin-Zaki L, Majeed MA, Elhassani SB, Clarkson TW, Greenwood MR, Doherty RA (1979) Prenatal methylmercury poisoning. Clinical observations over five years. Am J Dis Child 133:172–177

    Article  CAS  PubMed  Google Scholar 

  34. Khan N, Deeba N, Syed MH (2013) Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal 19:151–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chuang JY, Chang PC, Shen YC et al (2014) Regulatory effects of fisetin on microglial activation. Molecules 15:8820–8839

    Article  Google Scholar 

  36. Prakash D, Gopinath K, Sudhandiran G (2013) Fisetin enhances behavioral performances and attenuates reactive gliosis and inflammation during aluminum chloride-induced neurotoxicity. NeuroMolecular Med 15:192–208

    Article  CAS  PubMed  Google Scholar 

  37. Glowinski J, Iversen LL (1996) Regional studies of catecholamines in the rat brain. J Neurochem 13:655–669

    Article  Google Scholar 

  38. Sakamoto M, Nakano A, Kajiwara Y, Naruse I, Fujisaki T (1993) Effects of methyl mercury in postnatal developing rats. Environ Res 61:43–50

    Article  CAS  PubMed  Google Scholar 

  39. Onishchenko N, Tamm C, Vahter M, Tomas H, Johnson JA, DA J, Sandra C (2007) Developmental exposure to methylmercury alters learning and induces depression-like behavior in male mice. Toxicological Sci 97:428–437

    Article  CAS  Google Scholar 

  40. Yoshida M, Suzuki M, Satoh M, Yasutake A, Watanabe C (2011) Neurobehavioral effects of combined prenatal exposure to low-level mercury vapor and methylmercury. J Toxicol Sci 36:73–80

    Article  CAS  PubMed  Google Scholar 

  41. Beyrouty P, Stamler CJ, Liu JN, Loua KM, Kubow S, Chan HM (2006) Effects of prenatal methylmercury exposure on brain monoamine oxidase activity and neurobehaviour of rats. Neurotoxicol Teratol 28:251–259

    Article  CAS  PubMed  Google Scholar 

  42. Lowry OH, Risebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–270

    CAS  PubMed  Google Scholar 

  43. Devasagayam TP, Tarachand U (1987) Decreased lipid peroxidation in rat kidneys during gestation. Biochem Biophys Res Commun 145:134–138

    Article  CAS  PubMed  Google Scholar 

  44. Levine RL, Williams JA, Stadtman ER, Shater E (1994) Carbonyl, assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  CAS  PubMed  Google Scholar 

  45. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  CAS  PubMed  Google Scholar 

  46. Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  CAS  PubMed  Google Scholar 

  47. Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405

    Article  CAS  PubMed  Google Scholar 

  48. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  CAS  PubMed  Google Scholar 

  49. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  CAS  PubMed  Google Scholar 

  50. Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  CAS  PubMed  Google Scholar 

  51. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  CAS  PubMed  Google Scholar 

  52. Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143–152

    Article  CAS  PubMed  Google Scholar 

  53. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  54. Bonting SL (1970) Sodium-potassium activated adenosinetriphosphatase and cation transport. In Bittar EE (ed) Membranes and ion transport. Interscience Publishers, Ltd., London, 1:257–263

  55. Hjerton S, Pan H (1983) Purification and characterization of two forms of a low affinity Ca2+-ATPase from erythrocyte membranes. Biochim Biophys Acta 728:281–288

  56. Ohnishi T, Suzuki T, Suzuki Y, Ozawa K (1982) A comparative study of plasma membrane Mg2+-ATPase activities in normal, regenerating and malignant cells. Biochim Biophys Acta 684:67–74

  57. Fiske CK, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:376–406

    Google Scholar 

  58. Worek F, Eyer P, Thiermann H (2012) Determination of acetylcholinesterase activity by the Ellman assay: a versatile tool for in vitro research on medical countermeasures against organophosphate poisoning. Drug Test Anal 4:282–291

    Article  CAS  PubMed  Google Scholar 

  59. Feldman AT, Wolfe D (2014) Tissue processing and hematoxylin and eosin staining. Methods Mol Biol 1180:31–43

    Article  CAS  PubMed  Google Scholar 

  60. Furuta Y, Kobori O, Shimazu H, Morioka Y, Okuyama Y (1985) A new in vivo staining method, cresyl violet staining, for fiberoptic magnified observation of carcinoma of the gastric mucosa. Gastroenterol Jpn 20:120–124

    CAS  PubMed  Google Scholar 

  61. Nielsen JB, Andersen O (1992) The toxicokinetics of mercury in mice offspring after maternal exposure to methylmercury—effect of selenomethionine. Toxicology 74:233–241

    Article  CAS  PubMed  Google Scholar 

  62. Mansour MM, Dyer NC, Hoffman LH, Schulert AR, Brill AB (1973) Maternal-fetal transfer of organic and inorganic mercury via placenta and milk. Environ Res 6:479–484

    Article  CAS  PubMed  Google Scholar 

  63. Kerper LE, Ballatori N, Clarkson TW (1992) Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am J Phys 26:761–765

    Google Scholar 

  64. Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Exp Biol Med 222:236–245

    Article  CAS  Google Scholar 

  65. Yaginuma-Sakurai K, Murata K, Iwai-Shimada M, Nakai K, Kurokawa N, Tatsuta N, Satoh H (2012) Hair-to-blood ratio and biological half-life of mercury: experimental study of methylmercury exposure through fish consumption in humans. J Toxicol Sci 37:123–130

    Article  CAS  PubMed  Google Scholar 

  66. Franco JL, Teixeira A, Meotti FC, Ribas CM, Stringari J, Garcia PSC, Moro AM, Bohrer D, Bairros AV, Dafre AL, Santos AR, Farina M (2006) Cerebellar thiol status and motor deficit after lactational exposure to methylmercury. Environ Res 102:22–28

    Article  CAS  PubMed  Google Scholar 

  67. Gimenez-Llort L, Ahlbom E, Dare E, Vahter M, Ogren S, Ceccatelli S (2001) Prenatal exposure to methylmercury changes dopamine-modulated motor activity during early ontogeny: age and gender-dependent effects. Environ Toxicol Pharmacol 9:61–70

    Article  CAS  PubMed  Google Scholar 

  68. Maher P, Dargusch R, Bodai L, Paul E, Gerard PJM, Marsh JL (2011) ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington’s disease. Hum Mol Genet 20:261–270

    Article  CAS  PubMed  Google Scholar 

  69. Wu J, Cheng G, Lu Z, Wang M, Tian J, Bi Y (2016) Effects of methyl mercury chloride on rat hippocampus structure. Biol Trace Elem Res 171:124–130

    Article  CAS  PubMed  Google Scholar 

  70. Ravichandran N, Suresh G, Ramesh B, Siva GV (2011) Fisetin, a novel flavonol attenuates benzo(a)pyrene-induced lung carcinogenesis in Swiss albino mice. Food Chem Toxicol 49(5)

  71. Kanda H, Shinkai Y, Kumagai Y (2014) S-Mercuration of cellular proteins by methylmercury and its toxicological implications. J Toxicol Sci 39:687–700

    Article  CAS  PubMed  Google Scholar 

  72. Chiruta C, Schubert D, Dargusch R, Maher P (2012) Chemical modification of the multitarget neuroprotective compound fisetin. J MedChem 55:378–389

    CAS  Google Scholar 

  73. Magour S (1986) Studies on the inhibition of brain synaptosomal Na+/K+-ATPase by mercury chloride and methyl mercury chloride. Arch Toxicol 9:393–396

    Article  CAS  Google Scholar 

  74. Chuu JJ, Liu SH, Lin-Shiau SY (2001) Effects of methyl mercury, mercuric sulfide and cinnabar on active avoidance responses, Na+/K+-ATPase activities and tissue mercury contents in rats. Proc. Natl. Sci. Counc. Repub. China B 25:128–136

    CAS  Google Scholar 

  75. Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L (2011) Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb 3:1–30

    Google Scholar 

  76. Zhang Y, Lu R, Liu W, Wu Y, Qian H, Zhao X, Wang S, Xing G, Yu F, Aschner M (2013) Hormetic effects of acute methylmercury exposure on grp78 expression in rat brain cortex. Dose Response 11:109–120

    Article  CAS  PubMed  Google Scholar 

  77. Cheng JP, Yang YC, Hu WX, Yang L, Wang WH, Jia JP, Lin XY (2005) Effect of methylmercury on some neurotransmitters and oxidative damage of rats. J Environ Sci 17:469–473

    CAS  Google Scholar 

  78. Gao Y, Yan CH, Yu XD, Wu SH (2006) Effects of perinatal exposure to methylmercury on the structure of hippocampus and cerebellum in young rats. Wei Sheng Yan Jiu 35:402–405

    CAS  PubMed  Google Scholar 

  79. Falluel-More A, Sokolowski K, Sisti HM, Zhou X, Tracey J, Shors TJ, DiCicco-Bloom E (2007) Developmental mercury exposure elicits acute hippocampal cell death, reductions in neurogenesis, and severe learning deficits during puberty. J Neurochem 103:1968–1981

    Article  Google Scholar 

  80. Burbacher TM, Rodier PM, Weiss B (1990) Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicol Teratol 12:191–202

    Article  CAS  PubMed  Google Scholar 

  81. Carvalho MC, Nazari EM, Farina M, Muller YMR (2008) Behavioral, morphological, and biochemical changes after in ovo exposure to methylmercury in chicks. Toxicol Sci 106:180–185

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial assistance and award of Junior Research Fellowship (JRF) to the first author under the Department of Science and Technology - Promotion of University Research and Scientific Excellence (DST - PURSE) Phase II programme is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumathi Thangarajan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, S., Thangarajan, S. Effect of Gestational Intake of Fisetin (3,3′,4′,7-Tetrahydroxyflavone) on Developmental Methyl Mercury Neurotoxicity in F1 Generation Rats. Biol Trace Elem Res 177, 297–315 (2017). https://doi.org/10.1007/s12011-016-0886-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0886-x

Keywords

Navigation