Skip to main content
Log in

Accumulation of Metals in Juvenile Carp (Cyprinus carpio) Exposed to Sublethal Levels of Iron and Manganese: Survival, Body Weight and Tissue

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Many oxbows are contaminated by Fe and Mn as a consequence of the elemental concentration of sediment and water originating from the Upper Tisza Region of Hungary. The phenomenon is partly caused by anthropogenic activities and mainly due to the geochemical characteristics of the region. The effects of Fe and Mn on the aquatic ecosystem of these wetlands were investigated in a model experiments in this study. Survival, individual body weight and the elemental concentrations of organs were determined in common carp (Cyprinus carpio) juveniles reared in Fe and Mn contaminated media (treatment 1: Fe 0.57 mg L−1, Mn 0.29 mg L−1, treatment 2: Fe 0.57 mg L−1, Mn 0.625 mg L−1, treatment 3: Fe 1.50 mg L−1, Mn 0.29 mg L−1, treatment 4: Fe 1.50 mg L−1, Mn 0.625 mg L−1 and control: Fe 0.005 mg L−1, Mn 0.003 mg L−1), for rearing time of 49 days. The treatment with Fe and Mn did not have any effect on the survival data and individual body weight in the levels tested. The highest concentration of Fe and Mn was found in the liver and brain of carp juveniles, while the lowest concentration of these elements occurred in the muscular tissue and gills. The treatment where Fe and Mn were applied in the highest concentrations resulted in a statistically higher level of these elements in the brain, grills and muscle tissues. The treatment where only Mn was present in the highest concentration caused increased level of Mn only in the liver. We found metal accumulation in almost every organ; however, the applied concentrations and exposure time did not affect the survival and average body weight of carp juveniles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Islam MS, Ahmed MK, Raknuzzaman M et al (2015) Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecol Indic 48:282–291. doi:10.1016/j.ecolind.2014.08.016

    Article  CAS  Google Scholar 

  2. Lin H, Sun T, Xue S, Jiang X (2016) Heavy metal spatial variation, bioaccumulation, and risk assessment of Zostera japonica habitat in the Yellow River Estuary, China. Sci Total Environ 541:435–443. doi:10.1016/j.scitotenv.2015.09.050

    Article  CAS  PubMed  Google Scholar 

  3. Suárez-Serrano A, Alcaraz C, Ibáñez C et al (2010) Procambarus clarkii as a bioindicator of heavy metal pollution sources in the lower Ebro River and Delta. Ecotoxicol Environ Saf 73:280–286. doi:10.1016/j.ecoenv.2009.11.001

    Article  PubMed  Google Scholar 

  4. Fleit E (2003) Accumulative heavy metal patterns in the sediment and biotic compartments of the Tisza watershed. Toxicol Lett 140–141:323–332. doi:10.1016/S0378-4274(03)00029-8

    Article  PubMed  Google Scholar 

  5. Lakatos G (2003) Ecotoxicological studies and risk assessment on the cyanide contamination in Tisza river. Toxicol Lett 140–141:333–342. doi:10.1016/S0378-4274(03)00030-4

    Article  PubMed  Google Scholar 

  6. Balogh Z, Harangi S, Kundrát JT et al (2016) Effects of anthropogenic activities on the elemental concentration in surface sediment of oxbows. Water Air Soil Pollut. doi:10.1007/s11270-015-2714-x

    Google Scholar 

  7. Kundrát JT, Gyulai I, Baranyai E et al (2014) Felső-Tisza vidéki holtmedrek szennyezettségének felmérése vízminták alapján [Study of contamination of oxbows based on water samples analysis in the Upper-Tisza region]. Hidrol Közl 94:53–55

    Google Scholar 

  8. Amundsen P-A, Staldvik FJ, Lukin AA et al (1997) Heavy metal contamination in freshwater fish from the border region between Norway and Russia. Sci Total Environ 201:211–224. doi:10.1016/S0048-9697(97)84058-2

    Article  CAS  PubMed  Google Scholar 

  9. Linnik PM, Zubenko IB (2000) Role of bottom sediments in the secondary pollution of aquatic environments by heavy-metal compounds. Lakes Reserv Res Manag 5:11–21. doi:10.1046/j.1440-1770.2000.00094.x

    Article  Google Scholar 

  10. Nimmo DR, Willox MJ, Lafrancois TD et al (1998) Effects of metal mining and milling on boundary waters of Yellowstone National Park, USA. Environ Manag 22:913–926. doi:10.1007/s002679900158

    Article  CAS  Google Scholar 

  11. Simon E, Braun M, Tóthmérész B (2010) Non-destructive method of frog (Rana esculenta L.) skeleton elemental analysis used during environmental assessment. Water Air Soil Pollut 209:467–471. doi:10.1007/s11270-009-0214-6

    Article  CAS  Google Scholar 

  12. Fehér M, Baranyai E, Simon E et al (2013) The interactive effect of cobalt enrichment in Artemia on the survival and larval growth of barramundi, Lates calcarifer. Aquaculture 414–415:92–99. doi:10.1016/j.aquaculture.2013.07.031

    Article  Google Scholar 

  13. Gupta A, Rai DK, Pandey RS, Sharma B (2009) Analysis of some heavy metals in the riverine water, sediments and fish from river Ganges at Allahabad. Environ Monit Assess 157:449–458. doi:10.1007/s10661-008-0547-4

    Article  CAS  PubMed  Google Scholar 

  14. Mendil D, Uluözlü ÖD (2007) Determination of trace metal levels in sediment and five fish species from lakes in Tokat, Turkey. Food Chem 101:739–745. doi:10.1016/j.foodchem.2006.01.050

    Article  CAS  Google Scholar 

  15. Kestemont P (1995) Different systems of carp production and their impacts on the environment. Aquaculture 129:347–372. doi:10.1016/0044-8486(94)00292-V

    Article  Google Scholar 

  16. Ashouri S, Keyvanshokooh S, Salati AP et al (2015) Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio. Aquaculture 446:25–29. doi:10.1016/j.aquaculture.2015.04.021

    Article  CAS  Google Scholar 

  17. Kirchgessner M, Schwarz FJ (1986) Mineral content (major and trace elements) of carp (Cyprinus carpio L.) fed with different protein and energy supplies. Aquaculture 54:3–9. doi:10.1016/0044-8486(86)90248-6

    Article  CAS  Google Scholar 

  18. Ufodike EBC, Matty AJ (1983) Growth responses and nutrient digestibility in mirror carp (Cyprinus carpio) fed different levels of cassava and rice. Aquaculture 31:41–50. doi:10.1016/0044-8486(83)90256-9

    Article  Google Scholar 

  19. Zhao J, Liu Y, Jiang J et al (2012) Effects of dietary isoleucine on growth, the digestion and absorption capacity and gene expression in hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian. Aquaculture 368–369:117–128. doi:10.1016/j.aquaculture.2012.09.019

    Article  Google Scholar 

  20. Wong MH, Cheung YH, Lau WM (1982) Toxic effects of animal manures and sewage sludge as supplementary feeds for the common carp, Cyprinus carpio. Toxicol Lett 12:65–73. doi:10.1016/0378-4274(82)90200-4

    Article  CAS  PubMed  Google Scholar 

  21. Bundschuh M, Schletz M, Goedkoop W (2016) The mode of bioturbation triggers pesticide remobilization from aquatic sediments. Ecotoxicol Environ Saf 130:171–176. doi:10.1016/j.ecoenv.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  22. Ritvo G, Kochba M, Avnimelech Y (2004) The effects of common carp bioturbation on fishpond bottom soil. Aquaculture 242:345–356. doi:10.1016/j.aquaculture.2004.09.013

    Article  Google Scholar 

  23. Zhang X, Liu Z, Jeppesen E et al (2016) Effects of benthic-feeding common carp and filter-feeding silver carp on benthic-pelagic coupling: implications for shallow lake management. Ecol Eng 88:256–264. doi:10.1016/j.ecoleng.2015.12.039

    Article  Google Scholar 

  24. Has-Schön E, Bogut I, Vuković R et al (2015) Distribution and age-related bioaccumulation of lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As) in tissues of common carp (Cyprinus carpio) and European catfish (Sylurus glanis) from the Buško Blato reservoir (Bosnia and Herzegovina). Chemosphere 135:289–296. doi:10.1016/j.chemosphere.2015.04.015

    Article  PubMed  Google Scholar 

  25. García-Medina S, Angélica Núñez-Betancourt J, Lucero García-Medina A et al (2013) The relationship of cytotoxic and genotoxic damage with blood aluminum levels and oxidative stress induced by this metal in common carp (Cyprinus carpio) erythrocytes. Ecotoxicol Environ Saf 96:191–197. doi:10.1016/j.ecoenv.2013.06.010

    Article  PubMed  Google Scholar 

  26. Varanka Z, Rojik I, Varanka I et al (2001) Biochemical and morphological changes in carp (Cyprinus carpio L.) liver following exposure to copper sulfate and tannic acid. Comp Biochem Physiol Part C Toxicol Pharmacol 128:467–477. doi:10.1016/S1532-0456(01)00166-1

    Article  CAS  Google Scholar 

  27. Cossarini-Dunier M, Demael A, Lepot D, Guerin V (1988) Effect of manganese ions on the immune response of carp (Cyprinus carpio) against Yersinia ruckeri. Dev Comp Immunol 12:573–579. doi:10.1016/0145-305X(88)90073-0

    Article  CAS  PubMed  Google Scholar 

  28. Mohammadnabizadeh S, Pourkhabbaz A, Afshari R (2014) Analysis and determination of trace metals (nickel, cadmium, chromium, and lead) in tissues of Pampus argenteus and Platycephalus indicus in the Hara Reserve, Iran. J Toxicol 2014:1–6. doi:10.1155/2014/576496

    Article  Google Scholar 

  29. Leary SL, American Veterinary Medical Association (2013) AVMA guidelines for the euthanasia of animals: 2013 edition. ISBN 978–1–882691-21-0

  30. Voigt CL, da Silva CP, Doria HB et al (2015) Bioconcentration and bioaccumulation of metal in freshwater Neotropical fish Geophagus brasiliensis. Environ Sci Pollut Res 22:8242–8252. doi:10.1007/s11356-014-3967-4

    Article  CAS  Google Scholar 

  31. Merciai R, Guasch H, Kumar A et al (2014) Trace metal concentration and fish size: variation among fish species in a Mediterranean river. Ecotoxicol Environ Saf 107:154–161. doi:10.1016/j.ecoenv.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  32. Watanabe T, Kiron V, Satoh S (1997) Trace minerals in fish nutrition. Aquaculture 151:185–207. doi:10.1016/S0044-8486(96)01503-7

    Article  CAS  Google Scholar 

  33. Romanenko VD (1984) Metabolic aspects of warmwater culture of the carp, Cyprinus carpio L. Aquaculture 38:307–314. doi:10.1016/0044-8486(84)90335-1

    Article  CAS  Google Scholar 

  34. Ogino C, Yang G-Y (1980) Requirements of carp and rainbow trout for dietary manganese and copper. 46 455–8

  35. Skoric S, Visnjić-Jeftic Z, Jaric I et al (2012) Accumulation of 20 elements in great cormorant (Phalacrocorax carbo) and its main prey, common carp (Cyprinus carpio) and Prussian carp (Carassius gibelio. Ecotoxicol Environ Saf 80:244–251. doi:10.1016/j.ecoenv.2012.03.004

    Article  CAS  PubMed  Google Scholar 

  36. Squadrone S, Prearo M, Brizio P et al (2013) Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian rivers. Chemosphere 90:358–365. doi:10.1016/j.chemosphere.2012.07.028

    Article  CAS  PubMed  Google Scholar 

  37. Wei Y, Zhang J, Zhang D et al (2014) Metal concentrations in various fish organs of different fish species from Poyang Lake, China. Ecotoxicol Environ Saf 104:182–188. doi:10.1016/j.ecoenv.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  38. Yılmaz F, Özdemir N, Demirak A, Tuna AL (2007) Heavy metal levels in two fish species Leuciscus cephalus and Lepomis gibbosus. Food Chem 100:830–835. doi:10.1016/j.foodchem.2005.09.020

    Article  Google Scholar 

  39. Rajeshkumar S, Mini J, Munuswamy N (2013) Effects of heavy metals on antioxidants and expression of HSP70 in different tissues of milk fish (Chanos chanos) of Kaattuppalli Island, Chennai, India. Ecotoxicol Environ Saf 98:8–18. doi:10.1016/j.ecoenv.2013.07.029

    Article  CAS  PubMed  Google Scholar 

  40. Zhao J, Wang Z, Liu X et al (2011) Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. J Hazard Mater 197:304–310. doi:10.1016/j.jhazmat.2011.09.094

    Article  CAS  PubMed  Google Scholar 

  41. Hao L, Chen L, Hao J, Zhong N (2013) Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicol Environ Saf 91:52–60. doi:10.1016/j.ecoenv.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  42. Reynders H, Bervoets L, Gelders M et al (2008) Accumulation and effects of metals in caged carp and resident roach along a metal pollution gradient. Sci Total Environ 391:82–95. doi:10.1016/j.scitotenv.2007.10.056

    Article  CAS  PubMed  Google Scholar 

  43. Partridge GJ, Lymbery AJ (2009) Effects of manganese on juvenile mulloway (Argyrosomus japonicus) cultured in water with varying salinity—implications for inland mariculture. Aquaculture 290:311–316. doi:10.1016/j.aquaculture.2009.02.020

    Article  CAS  Google Scholar 

  44. Subotić S, Spasić S, Višnjić-Jeftić Ž et al (2013) Heavy metal and trace element bioaccumulation in target tissues of four edible fish species from the Danube River (Serbia). Ecotoxicol Environ Saf 98:196–202. doi:10.1016/j.ecoenv.2013.08.020

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the Agilent Technologies and the Novo-Lab Ltd. (Hungary) for providing the MP-AES 4200. The research was partially supported by the Internal Research Project of the University of Debrecen (E. Simon), by the TÁMOP 4.2.1./B-09/1/KONV-2010-0024 project and by the SROP-4.2.2.B-15/1/KONV20150001 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edina Simon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harangi, S., Baranyai, E., Fehér, M. et al. Accumulation of Metals in Juvenile Carp (Cyprinus carpio) Exposed to Sublethal Levels of Iron and Manganese: Survival, Body Weight and Tissue. Biol Trace Elem Res 177, 187–195 (2017). https://doi.org/10.1007/s12011-016-0854-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0854-5

Keywords

Navigation