Skip to main content

Advertisement

Log in

Zinc Levels in Left Ventricular Hypertrophy

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc is one of the most important trace elements in the body and zinc homeostasis plays a critical role in maintaining cellular structure and function. Zinc dyshomeostasis can lead to many diseases, such as cardiovascular disease. Our aim was to investigate whether there is a relationship between zinc and left ventricular hypertrophy (LVH). A total of 519 patients was enrolled and their serum zinc levels were measured in this study. We performed analyses on the relationship between zinc levels and LVH and the four LV geometry pattern patients: normal LV geometry, concentric remodeling, eccentric LVH, and concentric LVH. We performed further linear and multiple regression analyses to confirm the relationship between zinc and left ventricular mass (LVM), left ventricular mass index (LVMI), and relative wall thickness (RWT). Our data showed that zinc levels were 710.2 ± 243.0 μg/L in the control group and were 641.9 ± 215.2 μg/L in LVH patients. We observed that zinc levels were 715 ± 243.5 μg/L, 694.2 ± 242.7 μg/L, 643.7 ± 225.0 μg/L, and 638.7 ± 197.0 μg/L in normal LV geometry, concentric remodeling, eccentric LVH, and concentric LVH patients, respectively. We further found that there was a significant inverse linear relationship between zinc and LVM (p = 0.001) and LVMI (p = 0.000) but did not show a significant relationship with RWT (p = 0.561). Multiple regression analyses confirmed that the linear relationship between zinc and LVM and LVMI remained inversely significant. The present study revealed that serum zinc levels were significantly decreased in the LVH patients, especially in the eccentric LVH and concentric LVH patients. Furthermore, zinc levels were significantly inversely correlated with LVM and LVMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee SR, Noh SJ, Pronto JR, Jeong YJ, Kim HK, Song IS, Xu Z, Kwon HY, Kang SC, Sohn EH, Ko KS, Rhee BD, Kim N, Han J (2015) The critical roles of zinc: beyond impact on myocardial signaling. Kor J Physiol Pharmacol: Off J Kor Physiol Soc Kor Soc Pharmacol 19(5):389–399. doi:10.4196/kjpp.2015.19.5.389

    Article  CAS  Google Scholar 

  2. Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86(4):521–534. doi:10.1007/s00204-011-0775-1

    Article  CAS  PubMed  Google Scholar 

  3. Little PJ, Bhattacharya R, Moreyra AE, Korichneva IL (2010) Zinc and cardiovascular disease. Nutrition 26(11–12):1050–1057. doi:10.1016/j.nut.2010.03.007

    Article  CAS  PubMed  Google Scholar 

  4. Desai CS, Ning H, Lloyd-Jones DM (2012) Competing cardiovascular outcomes associated with electrocardiographic left ventricular hypertrophy: the atherosclerosis risk in communities study. Heart 98(4):330–334. doi:10.1136/heartjnl-2011-300819

    Article  PubMed  Google Scholar 

  5. Liu LS, Writing Group of Chinese Guidelines for the Management of H (2011) [2010 Chinese guidelines for the management of hypertension]. Zhonghua xin xue guan bing za zhi 39(7):579–615

    PubMed  Google Scholar 

  6. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ, Chamber Quantification Writing G, American Society of Echocardiography’s G, Standards C, European Association of E (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr: Off Publ Am Soc Echocardiogr 18(12):1440–1463. doi:10.1016/j.echo.2005.10.005

    Article  Google Scholar 

  7. Gebker R, Mirelis JG, Jahnke C, Hucko T, Manka R, Hamdan A, Schnackenburg B, Fleck E, Paetsch I (2010) Influence of left ventricular hypertrophy and geometry on diagnostic accuracy of wall motion and perfusion magnetic resonance during dobutamine stress. Circ Cardiovasc Imaging 3(5):507–514. doi:10.1161/CIRCIMAGING.109.923672

    Article  PubMed  Google Scholar 

  8. Ganau A, Devereux RB, Roman MJ, de Simone G, Pickering TG, Saba PS, Vargiu P, Simongini I, Laragh JH (1992) Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol 19(7):1550–1558

    Article  CAS  PubMed  Google Scholar 

  9. Hassan Imran A, Tasneem Gul K, Naveed K, Farah Naz T, Naeemullah, Sadaf Sadia A, Kapil Dev B, Sham Kumar W, Faheem S (2013) Distribution of copper, iron, and zinc in biological samples of Pakistani hypertensive patients and referent subjects of different age groups. Clin Lab 59(9–10):959–967. doi:10.7754/Clin.Lab.2012.120704

  10. Canatan H, Bakan I, Akbulut M, Halifeoglu I, Cikim G, Baydas G, Kilic N (2004) Relationship among levels of leptin and zinc, copper, and zinc/copper ratio in plasma of patients with essential hypertension and healthy normotensive subjects. Biol Trace Elem Res 100(2):117–123. doi:10.1385/BTER:100:2:117

    Article  CAS  PubMed  Google Scholar 

  11. Kim J (2013) Dietary zinc intake is inversely associated with systolic blood pressure in young obese women. Nutr Res Pract 7(5):380–384. doi:10.4162/nrp.2013.7.5.380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ozturk C, Aparci M, Karaduman M, Balta S, Celik T, Iyisoy A (2016) Relationship of systolic blood pressure and body mass index with left ventricular mass and mass index in adolescents. Angiology 67(1):58–65. doi:10.1177/0003319715573102

    Article  CAS  PubMed  Google Scholar 

  13. Subramanian M, Hunt AL, Petrucci GA, Chen Z, Hendley ED, Palmer BM (2014) Differential metal content and gene expression in rat left ventricular hypertrophy due to hypertension and hyperactivity. J Trace Elem Med Biol: Organ Soc Miner Trace Elem 28(3):311–316. doi:10.1016/j.jtemb.2014.02.002

    Article  CAS  Google Scholar 

  14. Pitt SJ, Stewart AJ (2015) Examining a new role for zinc in regulating calcium release in cardiac muscle. Biochem Soc Trans 43(3):359–363. doi:10.1042/BST20140285

    Article  CAS  PubMed  Google Scholar 

  15. Alvarez-Collazo J, Diaz-Garcia CM, Lopez-Medina AI, Vassort G, Alvarez JL (2012) Zinc modulation of basal and beta-adrenergically stimulated L-type Ca2+ current in rat ventricular cardiomyocytes: consequences in cardiac diseases. Pflugers Arch - Eur J Physiol 464(5):459–470. doi:10.1007/s00424-012-1162-3

    Article  CAS  Google Scholar 

  16. Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, Li J, Shehadeh LA, Hare JM, David V, Martin A, Fornoni A, Di Marco GS, Kentrup D, Reuter S, Mayer AB, Pavenstadt H, Stypmann J, Kuhn C, Hille S, Frey N, Leifheit-Nestler M, Richter B, Haffner D, Abraham R, Bange J, Sperl B, Ullrich A, Brand M, Wolf M, Faul C (2015) Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab 22(6):1020–1032. doi:10.1016/j.cmet.2015.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93(2):215–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Merten KE, Jiang Y, Kang YJ (2007) Zinc inhibits doxorubicin-activated calcineurin signal transduction pathway in H9c2 embryonic rat cardiac cells. Exp Biol Med 232(5):682–689

    CAS  Google Scholar 

  19. Liu Q, Chen Y, Auger-Messier M, Molkentin JD (2012) Interaction between NFkappaB and NFAT coordinates cardiac hypertrophy and pathological remodeling. Circ Res 110(8):1077–1086. doi:10.1161/CIRCRESAHA.111.260729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Y, Ha T, Gao X, Kelley J, Williams DL, Browder IW, Kao RL, Li C (2004) NF-kappaB activation is required for the development of cardiac hypertrophy in vivo. Am J Phys Heart Circ Phys 287(4):H1712–H1720. doi:10.1152/ajpheart.00124.2004

    CAS  Google Scholar 

  21. Zhang D, Liu J, Tu H, Muelleman RL, Cornish KG, Li YL (2014) In vivo transfection of manganese superoxide dismutase gene or nuclear factor kappaB shRNA in nodose ganglia improves aortic baroreceptor function in heart failure rats. Hypertension 63(1):88–95. doi:10.1161/HYPERTENSIONAHA.113.02057

    Article  CAS  PubMed  Google Scholar 

  22. Gupta S, Young D, Maitra RK, Gupta A, Popovic ZB, Yong SL, Mahajan A, Wang Q, Sen S (2008) Prevention of cardiac hypertrophy and heart failure by silencing of NF-kappaB. J Mol Biol 375(3):637–649. doi:10.1016/j.jmb.2007.10.006

    Article  CAS  PubMed  Google Scholar 

  23. Szuster-Ciesielska A, Plewka K, Daniluk J, Kandefer-Szerszen M (2009) Zinc supplementation attenuates ethanol- and acetaldehyde-induced liver stellate cell activation by inhibiting reactive oxygen species (ROS) production and by influencing intracellular signaling. Biochem Pharmacol 78(3):301–314. doi:10.1016/j.bcp.2009.04.009

    Article  CAS  PubMed  Google Scholar 

  24. Ho E, Quan N, Tsai YH, Lai W, Bray TM (2001) Dietary zinc supplementation inhibits NFkappaB activation and protects against chemically induced diabetes in CD1 mice. Exp Biol Med 226(2):103–111

    CAS  Google Scholar 

  25. Golik A, Cohen N, Ramot Y, Maor J, Moses R, Weissgarten J, Leonov Y, Modai D (1993) Type II diabetes mellitus, congestive heart failure, and zinc metabolism. Biol Trace Elem Res 39(2–3):171–175. doi:10.1007/BF02783187

    Article  CAS  PubMed  Google Scholar 

  26. Cohen N, Golik A (2006) Zinc balance and medications commonly used in the management of heart failure. Heart Fail Rev 11(1):19–24. doi:10.1007/s10741-006-9189-1

    Article  CAS  PubMed  Google Scholar 

  27. Trasobares E, Corbaton A, Gonzalez-Estecha M, Lopez-Colon JL, Prats P, Olivan P, Sanchez JA, Arroyo M (2007) Effects of angiotensin-converting enzyme inhibitors (ACE i) on zinc metabolism in patients with heart failure. J Trace Elem Med Biol: Organ Soc Miner Trace Elem 21(Suppl 1):53–55. doi:10.1016/j.jtemb.2007.09.018

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhelong Xu or Yuemin Sun.

Ethics declarations

Study procedures were in accordance with the ethical standards of the responsible ethics committee on human experimentation of Tianjin Medical University General Hospital. All participants gave informed written consent prior to inclusion in the study.

Conflict of Interest

The authors declare no conflict of interest. All authors have read and approved the final manuscript.

Electronic supplementary material

ESM 1

(DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Teng, T., Bian, B. et al. Zinc Levels in Left Ventricular Hypertrophy. Biol Trace Elem Res 176, 48–55 (2017). https://doi.org/10.1007/s12011-016-0808-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0808-y

Keywords

Navigation