Skip to main content
Log in

Effect of Resveratrol Administration on the Element Metabolism in the Blood and Brain Tissues of Rats Subjected to Acute Swimming Exercise

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The aim of the present study is to examine how resveratrol administration affects the element metabolism in the blood and brain cortex tissues of rats subjected to an acute swimming exercise. The study was carried out on Wistar-Albino-type adult male rats supplied by the Center. Group 1 is the control group. Group 2 is the swimming control group. Group 3 is the resveratrol (10 mg/kg/day) + swimming group. Group 4 is the resveratrol (10 mg/kg/day) group. Blood and brain cortex tissues were analyzed for some elements. The acute swimming exercise led to increases in the rats’ serum iron, selenium, lead, cobalt, and boron levels, while the resveratrol-swimming group has increases in copper, phosphorus, and calcium values. The brain cortex tissue of the resveratrol-swimming group had significantly higher molybdenum levels than others. The results obtained in the study indicate that acute swimming exercise altered the distribution of elements in the serum to a considerable extent; however, resveratrol’s affect is limited. Especially, resveratrol supplementation may have a regulatory affect on serum iron and magnesium levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McClung JP, Gaffney-Stomberg E, Lee JJ (2014) Female athletes: a population at risk of vitamin and mineral deficiencies affecting health and performance. J Trace Elem Med Biol 28:388–392

    Article  CAS  PubMed  Google Scholar 

  2. Shafiei Neek L, Gaeini AA, Choobineh S (2011) Effect of zinc and selenium supplementation on serum testosterone and plasma lactate in cyclist after an exhaustive exercise bout. Biol Trace Elem Res 144:454–462

    Article  CAS  PubMed  Google Scholar 

  3. Soria M, González-Haro C, Ansón M, López-Colón JL, Escanero JF (2014) Plasma levels of trace elements and exercise induced stress hormones in well trained athletes. J Trace Elem Med Biol 31:113–119

    Article  Google Scholar 

  4. González-Haro C, Soria M, López-Colón JL, Llorente MT, Escanero JF (2011) Plasma trace elements levels are not altered by submaximal exercise intensities in well-trained endurance euhydrated athletes. J Trace Elem Med Biol Suppl 1:54–58

    Article  Google Scholar 

  5. Gleeson M, Bishop NC (2000) Elite athlete immunology: importance of nutrition. Suppl 1:44–50

    Google Scholar 

  6. Dolinsky VW, Dyck JR (2014) Experimental studies of the molecular pathways regulated by exercise and resveratrol in heart, skeletal muscle and the vasculature. Molecules 19:14919–14947

    Article  PubMed  Google Scholar 

  7. Raj Louis XL, Thandapilly SJ, Movahed A, Zieroth S, Netticadan T (2014) Potential of resveratrol in the treatment of heart failure. Life Sci 95:63–71

    Article  PubMed  Google Scholar 

  8. Voduc N, la Porte C, Tessier C, Mallick R, Cameron DW (2014) Effect of resveratrol on exercise capacity: a randomized placebo-controlled crossover pilot study. Appl Physiol Nutr Metab 39:1183–118

    Article  CAS  PubMed  Google Scholar 

  9. Mercken EM, Carboneau BA, Krzysik-Walker SM, de Cabo R (2012) Of mice and men: the benefits of caloric restriction, exercise, and mimetics. Ageing Res Rev 11:390–398

    Article  PubMed  Google Scholar 

  10. Schrauwen P, Timmers S (2014) Can resveratrol help to maintain metabolic health? Proc Nutr Soc 73:271–277

    Article  CAS  PubMed  Google Scholar 

  11. Murase T, Haramizu S, Ota N, Hase T (2009) Suppression of the aging-associated decline in physical performance by a combination of resveratrol intake and habitual exercise in senescence-accelerated mice. Biogerontology 10:423–434

    Article  CAS  PubMed  Google Scholar 

  12. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    Article  CAS  PubMed  Google Scholar 

  14. Marchal J, Pifferi F, Aujard F (2013) Resveratrol in mammals: effects on aging biomarkers, age-related diseases, and life span. Ann N Y Acad Sci 1290:67–73

    Article  CAS  PubMed  Google Scholar 

  15. Momken I, Stevens L, Bergouignan A, Desplanches D, Rudwill F, Chery I, Zahariev A, Zahn S (2011) Resveratrol prevents the wasting disorders of mechanical unloading by acting as a physical exercise mimetic in the rat. FASEB J 25:3646–3660

    Article  CAS  PubMed  Google Scholar 

  16. Bennett BT, Mohamed JS, Alway SE (2013) Effects of resveratrol on the recovery of muscle mass following disuse in the plantaris muscle of aged rats. Plos One 8:e83518

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gordon BS, Delgado-Diaz DC, Carson J, Fayad R, Wilson LB, Kostek MC (2014) Resveratrol improves muscle function but not oxidative capacity in young mdx mice. Can J Physiol Pharmacol 92:243–251

    Article  CAS  PubMed  Google Scholar 

  18. Wu RE, Huang WC, Liao CC, Chang YK, Kan NW, Huang CC (2013) Resveratrol protects against physical fatigue and improves exercise performance in mice. Molecules 18:4689–4702

    Article  CAS  PubMed  Google Scholar 

  19. Dolinsky VW, Jones KE, Sidhu RS, Haykowsky M, Czubryt MP, Gordon T, Dyck JR (2012) Improvements in skeletal muscle strength and cardiac function induced by resveratrol contribute to enhanced exercise performance in rats. J Physiol 590:2783–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hart N, Sarga L, Csende Z, Koltai E, Koch LG, Britton SL, Davies KJ, Kouretas D (2013) Resveratrol enhances exercise training responses in rats selectively bred for high running performance. Food Chem Toxicol 61:53–59

    Article  CAS  PubMed  Google Scholar 

  21. Dolinsky VW, Rogan KJ, Sung MM, Zordoky BN, Haykowsky MJ, Young ME, Jones LW, Dyck JR (2013) Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice. Am J Physiol Endocrinol Metab 305:E243–E253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mayers JR, Iliff BW, Swoap SJ (2009) Resveratrol treatment in mice does not elicit the bradycardia and hypothermia associated with calorie restriction. FASEB J 23:1032–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oscai LB, Molé PA (1975) Laboratory techniques involving small animals in exercise physiology research. Exerc Sport Sci Rev 3:351–370

    Article  CAS  PubMed  Google Scholar 

  24. NIST Standard reference materials catalog (1996) NIST Special Publication 260, Standards Reference Material Programme, U.S. Department of Commerce, Gaithersburg, MD 20899-0001, USA.

  25. Marrella M, Guerrini F, Solero PL, Tregnaghi PL, Schena F, Velo GP (1993) Blood copper and zinc changes in runners after a marathon. J Trace Elem Electrolytes Health Dis 7:248–250

    CAS  PubMed  Google Scholar 

  26. Lukaski HC (1989) Effects of exercise training on human copper and zinc nutriture. Adv Exp Med Biol 258:163–170

    CAS  PubMed  Google Scholar 

  27. Cordova A, Gimenez M, Escanero JF (1990) Changes of plasma zinc and copper at various times of swimming until exhaustion, in the rat. J Trace Elem Electrolytes Health Dis 4:189–192

    CAS  PubMed  Google Scholar 

  28. Konig D, Weinstock C, Keul J, Northoff H, Berg A (1988) Iron, zinc and magnesium status in athletes—influence on the regulation of exercise-induced stress and immune function. Exerc Immunol Rev 4:2–21

    Google Scholar 

  29. McDonald R, Keen CL (1988) Iron, zinc and magnesium nutrition and athletic performance. Sports Med 5:171–184

    Article  CAS  PubMed  Google Scholar 

  30. Raz I, Karsai D, Katz M (1989) The influence of zinc supplementation on glucose homeostasis in NIDDM. Diabetes Res 11:73–79

    CAS  PubMed  Google Scholar 

  31. Rossetti L, Giaccari A, Klein-Robbenhaar E, Vogel LR (1990) Insulinomimetic properties of trace elements and characterization of their in vivo model of action. Diabetes 39:1243–1250

    Article  CAS  PubMed  Google Scholar 

  32. Bicer M, Akil M, Sivrikaya A, Kara E, Baltaci AK, Mogulkoc R (2011) Effect of zinc supplementation on the distribution of various elements in the serum of diabetic rats subjected to an acute swimming exercise. J Physiol Biochem 67:511–517

    Article  CAS  PubMed  Google Scholar 

  33. McAnulty LS, Miller LE, Hosick PA, Utter AC, Quindry JC, McAnulty SR (2013) Effect of resveratrol and quercetin supplementation on redox status and inflammation after exercise. Appl Physiol Nutr Metab 38:760–765

    Article  CAS  PubMed  Google Scholar 

  34. Malaguti M, Angeloni C, Hrelia S (2013) Polyphenols in exercise performance and prevention of exercise-induced muscle damage. Oxid Med Cell Longev 2013:825928

    Article  PubMed  PubMed Central  Google Scholar 

  35. Skrajnowska D, Bobrowska-Korczak B, Tokarz A, Bialek S, Jezierska E, Makowska J (2013) Copper and resveratrol attenuates serum catalase, glutathione peroxidase, and element values in rats with DMBA-induced mammary carcinogenesis. Biol Trace Elem Res 156:271–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hager J, El Ferjani E (2004) Effect of copper excess on superoxide dismutase, catalase, and peroxidase activities in sunflower seedlings (Helianthus annuus L.). Acta Physiol Plant 26:29–35

    Article  Google Scholar 

  37. Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Rio LA (2002) Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:21–530

    Article  Google Scholar 

  38. Mizutani K, Ikeda K, Kawai Y, Yamori Y (2000) Resveratrol attenuates ovariectomy-induced hypertension and bone loss in stroke-prone spontaneously hypertensive rats. J Nutr Sci Vitaminol (Tokyo) 46:78–83

    Article  CAS  Google Scholar 

  39. Akil M, Bicer M, Menevse E, Baltaci AK, Mogulkoc R (2011) Selenium supplementation prevents lipid peroxidation caused by arduous exercise in rat brain tissue. Bratisl Lek Listy 112:314–317

    CAS  PubMed  Google Scholar 

  40. 40.Bicer M, Akil M, Sivrikaya A, Baltaci AK, Mogulkoc R, Gunay M (2010) Effect of zinc-supplementation and acute swimming exercise on element distribution in the brain of diabetic rats. International Scientific Conference Perspectives in Physical Education and Sport 10th edition, Constanta-Romania Book of Abstracts 21-23 May; pp.9

  41. Patlar S, Gulnar U, Baltaci AK, Mogulkoc R (2014) Effect of nocturnal exhaustion exercise on the metabolism of selected elements. Arch Biol Sci Belgrade 66:1595–1601

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Scientific Research Projects Coordinatorship of Selcuk University (SUBAPK; project no. 14202013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulkerim Kasim Baltaci.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltaci, A.K., Arslangil, D., Mogulkoc, R. et al. Effect of Resveratrol Administration on the Element Metabolism in the Blood and Brain Tissues of Rats Subjected to Acute Swimming Exercise. Biol Trace Elem Res 175, 421–427 (2017). https://doi.org/10.1007/s12011-016-0792-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0792-2

Keywords

Navigation