Skip to main content

Advertisement

Log in

Early High-Fat Feeding Induces Alteration of Trace Element Content in Tissues of Juvenile Male Wistar Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The primary objective of the current study was to assess the influence of early high-fat feeding on tissue trace element content in young male Wistar rats. Twenty weanling male Wistar rats were divided into two groups fed standard (STD) or high-fat diet (HFD) containing 10 and 31.6 % of total calories from fat, respectively, for 1 month. Serum lipid spectrum, apolipoproteins, glucose, insulin, adiponectin, and leptin levels were assessed. The level of trace elements was estimated using inductively coupled plasma mass spectrometry. High-fat feeding significantly increased epidydimal (EDAT) and retroperitoneal adipose tissue (RPAT), as well as total adipose tissue mass by 34, 103, and 59 %, respectively. Serum leptin levels in HFD animals were twofold higher than those in the control rats. No significant difference in serum lipid spectrum, apolipoproteins, glucose, adiponectin, and insulin was detected between the groups. HFD significantly altered tissue trace element content. In particular, HFD-fed animals were characterized by significantly lower levels of Cu, I, Mn, Se, and Zn in the liver; Cr, V, Co, Cu, Fe, and I content of EDAT; Co, Cu, I, Cr, V, Fe, and Zn concentration in RPAT samples. At the same time, only serum Cu was significantly depressed in HFD-fed animals as compared to the control ones. Hair Co, Mn, Si, and V levels were significantly increased in comparison to the control values, whereas Se and I content was decreased. HFD feeding induced excessive adiposity and altered tissue trace element content in rats without insulin resistance, adiponectin deficiency, and proatherogenic state. Hypothetically, trace element disbalance may precede obesity-associated metabolic disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization (2015) Obesity and overweight. Fact sheet N 311. Updated January 2015

  2. Kelly T, Yang W, Chen CS, Reynolds K, He J (2008) Global burden of obesity in 2005 and projections to 2030. Int J Obes 32(9):1431–1437

    Article  CAS  Google Scholar 

  3. Thomas DM, Weedermann M, Fuemmeler BF, et al. (2014) Dynamic model predicting overweight, obesity, and extreme obesity prevalence trends. Obesity 22(2):590–597

    Article  PubMed  Google Scholar 

  4. Gard M (2010) The end of the obesity epidemic. Routledge

  5. Han JC, Lawlor DA, Kimm SY (2010) Childhood obesity. Lancet 375(9727):1737–1748

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wright CM, Parker L, Lamont D, Craft AW (2001) Implications of childhood obesity for adult health: findings from thousand families cohort study. BMJ 323(7324):1280–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liang Y, Hou D, Zhao X, et al. (2015) Childhood obesity affects adult metabolic syndrome and diabetes. Endocrine 50(1):87–92

    Article  CAS  PubMed  Google Scholar 

  8. Ebbeling CB, Pawlak DB, Ludwig DS (2002) Childhood obesity: public-health crisis, common sense cure. Lancet 360(9331):473–482

    Article  PubMed  Google Scholar 

  9. Fraga CG (2005) Relevance, essentiality and toxicity of trace elements in human health. Mol Asp Med 26(4):235–244

    Article  CAS  Google Scholar 

  10. Wiernsperger N, Rapin J (2010) Trace elements in glucometabolic disorders: an update. Diabetol Metab Syndr 2(70):1–9

    Google Scholar 

  11. Zafon C, Lecube A, Simo R (2010) Iron in obesity. An ancient micronutrient for a modern disease. Obes Rev 11(4):322–328

    Article  CAS  PubMed  Google Scholar 

  12. Nikonorov AA, Skalnaya MG, Tinkov AA, Skalny AV (2015) Mutual interaction between iron homeostasis and obesity pathogenesis. J Trace Elem Med Biol 30:207–214

    Article  CAS  PubMed  Google Scholar 

  13. Skalnaya MG, Demidov VA (2007) Hair trace element contents in women with obesity and type 2 diabetes. J Trace Elem Med Biol 21:59–61

    Article  CAS  PubMed  Google Scholar 

  14. Wojciak RW, Mojs E, Stanislawska-Kubiak M (2010) Comparison of the hair metals in obese children according to slim therapy. Trace Elem Electrolytes 27(4):192–195

    Article  CAS  Google Scholar 

  15. Tascilar ME, Ozgen IT, Abaci A, Serdar M, Aykut O (2011) Trace elements in obese Turkish children. Biol Trace Elem Res 143(1):188–195

    Article  CAS  PubMed  Google Scholar 

  16. Suliburska J, Cofta S, Gajewska E, et al. (2013) The evaluation of selected serum mineral concentrations and their association with insulin resistance in obese adolescents. Eur Rev Med Pharmacol Sci 17(17):2396–2400

    CAS  PubMed  Google Scholar 

  17. Jiao HT, Liu P, Lu WT, Qiao M, Ren XF, Zhang Z (2014) Correlation study between simple obesity and serum concentrations of essential elements. Trace Elem Electrolytes 31(2):53–59

    Article  CAS  Google Scholar 

  18. Baltaci AK, Mogulkoc R, Halifeoglu I (2005) Effects of zinc deficiency and supplementation on plasma leptin levels in rats. Biol Trace Elem Res 104(1):41–46

    Article  CAS  PubMed  Google Scholar 

  19. Król E, Krejpcio Z (2010) Chromium (III) propionate complex supplementation improves carbohydrate metabolism in insulin-resistance rat model. Food Chem Toxicol 48(10):2791–2796

    Article  PubMed  Google Scholar 

  20. Tuzcu M, Sahin N, Orhan C, et al. (2011) Impact of chromium histidinate on high fat diet induced obesity in rats. Nutr Metab 8(1):1

    Article  Google Scholar 

  21. Tinkov AA, Popova EV, Polyakova VS, Kwan OV, Skalny AV, Nikonorov AA (2015) Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats. J Trace Elem Med Biol 29:176–181

    Article  CAS  PubMed  Google Scholar 

  22. Tinkov AA, Popova EV, Gatiatulina ER, Skalnaya AA, Yakovenko EN, Alchinova IB, Karganov MY, Skalny AV, Nikonorov AA (2016) Decreased adipose tissue zinc content is associated with metabolic parameters in high fat fed Wistar rats. Acta Sci Pol Technol Aliment 15(1):99–105

    Article  PubMed  Google Scholar 

  23. Emoto M, Nishizawa Y, Maekawa K, Hiura Y, Kanda H, Kawagishi T, Shoji T, Okuno Y, Morii H (1999) Homeostasis model assessment as a clinical index of insulin resistance in type 2 diabetic patients treated with sulfonylureas. Diabetes Care 22(5):818–822

    Article  CAS  PubMed  Google Scholar 

  24. Baumgartner RN, Waters DL, Morley JE, Patrick P, Montoya GD, Garry PJ (1999) Age-related changes in sex hormones affect the sex difference in serum leptin independently of changes in body fat. Metabolism 48(3):378–384

    Article  CAS  PubMed  Google Scholar 

  25. Cottart CH, Bonvin E, Rey C, et al. (2007) Impact of nutrition on phenotype in CFTR-deficient mice. Pediatr Res 62(5):528–532

    Article  CAS  PubMed  Google Scholar 

  26. Stern N, Osher E, Greenman Y (2007) Hypoadiponectinemia as a marker of adipocyte dysfunction—part II: the functional significance of low adiponectin secretion. J Cardiometab Syndr 2(4):288–294

    Article  PubMed  Google Scholar 

  27. de Ferranti S, Mozaffarian D (2008) The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem 54(6):945–955

    Article  PubMed  Google Scholar 

  28. Maury E, Brichard SM (2010) Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 314(1):1–16

    Article  CAS  PubMed  Google Scholar 

  29. Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27(6):1487–1495

    Article  PubMed  Google Scholar 

  30. Do GM, Oh HY, Kwon EY, et al. (2011) Long-term adaptation of global transcription and metabolism in the liver of high-fat diet-fed C57BL/6 J mice. Mol Nutr Food Res 55(S2):S173–S185

    Article  CAS  PubMed  Google Scholar 

  31. Relling DP, Esberg LB, Fang CX, et al. (2006) High-fat diet-induced juvenile obesity leads to cardiomyocyte dysfunction and upregulation of Foxo3a transcription factor independent of lipotoxicity and apoptosis. J Hypertens 24(3):549–561

    Article  CAS  PubMed  Google Scholar 

  32. Nishikawa S, Yasoshima A, Doi K, Nakayama H, Uetsuka K (2007) Involvement of sex, strain and age factors in high fat diet-induced obesity in C57BL/6 J and BALB/cA mice. Exp Anim 56(4):263–272

    Article  CAS  PubMed  Google Scholar 

  33. Ghibaudi L, Cook J, Farley C, Heek M, Hwa JJ (2002) Fat intake affects adiposity, comorbidity factors, and energy metabolism of Sprague-Dawley rats. Obes Res 10(9):956–963

    Article  CAS  PubMed  Google Scholar 

  34. Song M, Schuschke DA, Zhou Z, et al. (2012) High fructose feeding induces copper deficiency in Sprague–Dawley rats: a novel mechanism for obesity related fatty liver. J Hepatol 56(2):433–440

    Article  CAS  PubMed  Google Scholar 

  35. Kennedy ML, Failla ML, Smith JJC (1986) Influence of genetic obesity on tissue concentrations of zinc, copper, manganese and iron in mice. J Nutr 116(8):1432–1441

    CAS  PubMed  Google Scholar 

  36. Donaldson DL, Smith CC, Koh E (1987) Effects of obesity and diabetes on tissue zinc and copper concentrations in the Zucker rat. Nutr Res 7(4):393–399

    Article  CAS  Google Scholar 

  37. Feldman A, Aigner E, Weghuber D, Paulmichl K (2015) The potential role of iron and copper in pediatric obesity and nonalcoholic fatty liver disease. BioMed Res Int. doi:10.1155/2015/287401

    Google Scholar 

  38. Tinkov AA, Polyakova VS, Nikonorov AA (2013) Chronic administration of iron and copper potentiates adipogenic effect of high fat diet in Wistar rats. Biometals 26(3):447–463

    Article  CAS  PubMed  Google Scholar 

  39. Lima SCVC, Arrais RF, Sales CH, et al. (2006) Assessment of copper and lipid profile in obese children and adolescents. Biol Trace Elem Res 114(1–3):19–29

    Article  CAS  PubMed  Google Scholar 

  40. Sánchez C, López-Jurado M, Aranda P, Llopis J (2010) Plasma levels of copper, manganese and selenium in an adult population in southern Spain: influence of age, obesity and lifestyle factors. Sci Total Environ 408(5):1014–1020

    Article  PubMed  Google Scholar 

  41. Obeid O, Elfakhani M, Hlais S, et al. (2008) Plasma copper, zinc, and selenium levels and correlates with metabolic syndrome components of lebanese adults. Biol Trace Elem Res 123(1–3):58–65

    Article  CAS  PubMed  Google Scholar 

  42. Hua Y, Clark S, Ren J, Sreejayan N (2012) Molecular mechanisms of chromium in alleviating insulin resistance. J Nutr Biochem 23(4):313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Srivastava AK, Mehdi MZ (2005) Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabet Med 22(1):2–13

    Article  CAS  PubMed  Google Scholar 

  44. Tinkov AA, Sinitskii AI, Popova EV, Nemereshina ON, Gatiatulina ER, Skalnaya MG, Skalny AV, Nikonorov AA (2015b) Alteration of local adipose tissue trace element homeostasis as a possible mechanism of obesity-related insulin resistance. Med Hypotheses 85(3):343–347

    Article  CAS  PubMed  Google Scholar 

  45. Furukawa S, Fujita T, Shimabukuro M, et al. (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114(12):1752–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thomson CD (2004) Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 58(3):391–402

    Article  CAS  PubMed  Google Scholar 

  47. Kaidar-Person O, Person B, Szomstein S, Rosenthal RJ (2008) Nutritional deficiencies in morbidly obese patients: a new form of malnutrition? Obes Surg 18(8):1028–1034

    Article  PubMed  Google Scholar 

  48. Beems RB (1986) Dietary selenium-and benzo [a] pyrene-induced respiratory tract tumours in hamsters. Carcinogenesis 7(3):485–489

    Article  CAS  PubMed  Google Scholar 

  49. Mahfouz MM, Kummerow FA (2000) Cholesterol-rich diets have different effects on lipid peroxidation, cholesterol oxides, and antioxidant enzymes in rats and rabbits. J Nutr Biochem 11(5):293–302

    Article  CAS  PubMed  Google Scholar 

  50. Ramadan KS, Yousef JM, Hamza AH, Abdel SE (2013) Antioxidant and protective effects of selenium against metabolic syndrome induced by high fructose in rats. IJAST 3(5):45–54

    Google Scholar 

  51. Biondi B (2010) Thyroid and obesity: an intriguing relationship. J Clin Endocrinol Metab 95(8):3614–3617

    Article  CAS  PubMed  Google Scholar 

  52. Brito PD, Ramos CF, Passos MCF, Moura EG (2006) Adaptive changes in thyroid function of female rats fed a high-fat and low-protein diet during gestation and lactation. Braz J Med Biol Res 39(6):809–816

    Article  CAS  PubMed  Google Scholar 

  53. Lin WH, Chen MD, Lin PY (1992) Investigation of the profile of selected trace metals in genetically obese (ob/ob) and lean (+/?) mice. J Formos Med Assoc 91:S27-33

    PubMed  Google Scholar 

  54. Tallman DL, Noto AD, Taylor CG (2009) Low and high fat diets inconsistently induce obesity in C57BL/6 J mice and obesity compromises n-3 fatty acid status. Lipids 44(7):577–580

    Article  CAS  PubMed  Google Scholar 

  55. Charradi K, Elkahoui S, Karkouch I, Limam F, Hassine FB, El May MV, Aouani E (2014) Protective effect of grape seed and skin extract against high-fat diet-induced liver steatosis and zinc depletion in rat. Dig Dis Sci 59(8):1768–1778

    Article  PubMed  Google Scholar 

  56. do NascimentoMarreiro D, Fisberg M, SMF C (2004) Zinc nutritional status and its relationships with hyperinsulinemia in obese children and adolescents. Biol Trace Elem Res 100(2):137–149

    Article  Google Scholar 

  57. Ozata M, Mergen M, Oktenli C, et al. (2002) Increased oxidative stress and hypozincemia in male obesity. Clin Biochem 35(8):627–631

    Article  CAS  PubMed  Google Scholar 

  58. Choi MK, Lee SH, Kim SK (2014) Relationship between adiposity-related biomarkers and calcium, magnesium, iron, copper, and zinc in young adult men with different degrees of obesity. Trace Elem Electrolytes 31(4):148–155

    Article  Google Scholar 

  59. Yanoff LB, Menzie CM, Denkinger B, Sebring NG, McHugh T, Remaley AT, Yanovski JA (2007) Inflammation and iron deficiency in the hypoferremia of obesity. Int J Obes 31(9):1412–1419

    Article  CAS  Google Scholar 

  60. Suliburska J (2013) A six-week diet high in fat, fructose and salt and its influence on lipid and mineral status in rats. Acta Sci Pol Technol Aliment 12:195–202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Tinkov.

Ethics declarations

The protocol of investigation was approved by the Local Ethics Committee. All animal studies have been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Alexey A. Tinkov and Eugenia R. Gatiatulina contributed equally to the research

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tinkov, A.A., Gatiatulina, E.R., Popova, E.V. et al. Early High-Fat Feeding Induces Alteration of Trace Element Content in Tissues of Juvenile Male Wistar Rats. Biol Trace Elem Res 175, 367–374 (2017). https://doi.org/10.1007/s12011-016-0777-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0777-1

Keywords

Navigation