Biological Trace Element Research

, Volume 175, Issue 1, pp 103–111 | Cite as

Fluoride-Induced Oxidative and Inflammatory Stress in Osteosarcoma Cells: Does It Affect Bone Development Pathway?

  • Deepa Gandhi
  • Pravin K. Naoghare
  • Amit Bafana
  • Krishnamurthi Kannan
  • Saravanadevi Sivanesan


Oxidative stress is reported to negatively affect osteoblast cells. Present study reports oxidative and inflammatory signatures in fluoride-exposed human osteosarcoma (HOS) cells, and their possible association with the genes involved in osteoblastic differentiation and bone development pathways. HOS cells were challenged with sublethal concentration (8 mg/L) of sodium fluoride for 30 days and analyzed for transcriptomic expression. In total, 2632 transcripts associated with several biological processes were found to be differentially expressed. Specifically, genes involved in oxidative stress, inflammation, osteoblastic differentiation, and bone development pathways were found to be significantly altered. Variation in expression of key genes involved in the abovementioned pathways was validated through qPCR. Expression of serum amyloid A1 protein, a key regulator of stress and inflammatory pathways, was validated through western blot analysis. This study provides evidence that chronic oxidative and inflammatory stress may be associated with the fluoride-induced impediment in osteoblast differentiation and bone development.


Sodium fluoride Osteosarcoma cells (HOS) Oxidative stress Inflammatory stress Gene microarray Bone development 



The authors are grateful to Council of Scientific and Industrial Research (CSIR), India, for providing research grant and necessary facilities under INDEPTH networking project (BSC0111). Deepa Gandhi is thankful to the Department of Science and Technology (DST), India, for the award of senior research fellowship (number IF110408). This manuscript represents CSIR-NEERI communication number KRC\2016\MAY\EHD\1.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12011_2016_756_MOESM1_ESM.docx (24 kb)
Table S1 (DOCX 23 kb)


  1. 1.
    Ngoc TDN, Son YO, Lim SS, Shi X, Kim JG, Heo JS, Choe Y, Jeon YM, Lee JC (2012) Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase-and JNK-mediated pathways. Toxicol Appl Pharmacol 259:329–337CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Rice JR, Boyd WA, Chandra D, Smith MV, Besten PK, Freedman JH (2014) Comparison of the toxicity of fluoridation compounds in the nematode Caenorhabditis elegans. Environ Toxicol Chem 33:82–88CrossRefPubMedGoogle Scholar
  3. 3.
    Joshi V, Joshi NK (2014) Fluorosis and its impact on public health in Jodhpur Rajasthan. Int J Basic Appl Med Sci 4:87–92Google Scholar
  4. 4.
    O’Brien CA (2010) Control of RANKL gene expression. Bone 46:911-919Google Scholar
  5. 5.
    Anna T (2011) Bone development: overview of bone cells and signaling. Curr Osteoporos Rep 9:264–273CrossRefGoogle Scholar
  6. 6.
    Schoon EJ, Blok BM, Geerling BJ, Russel MG, Stockbrugger RW, Brummer RJM (2000) Bone mineral density in patients with recently diagnosed inflammatory bowel disease. Gastroenterology 119:1203–1208CrossRefPubMedGoogle Scholar
  7. 7.
    Schett G, Kiechl S, Weger S, Pederiva A, Mayr A, Petrangeli M, Oberhollenzer F, Lorenzini R, Redlich K, Axmann R, Zwerina J, Willeit J (2006) High-sensitivity C-reactive protein and risk of nontraumatic fractures in the Bruneck study. Arch Intern Med 166:2495–2501CrossRefPubMedGoogle Scholar
  8. 8.
    Daiwile AP, Sivanesan S, Izzotti A, Bafana A, Naoghare PK, Arrigo P, Purohit HJ, Parmar D, Kannan K (2015) Noncoding RNAs: possible players in the development of fluorosis. BioMed Res IntGoogle Scholar
  9. 9.
    Gandhi D, Tarale P, Naoghare PK, Bafana A, Krishnamurthi K, Arrigo P, Saravanadevi S (2015) An integrated genomic and proteomic approach to identify signatures of endosulfan exposure in hepatocellular carcinoma cells. Pestic Biochem Physiol 125:8–16CrossRefPubMedGoogle Scholar
  10. 10.
    Hardy R, Cooper MS (2009) Bone loss in inflammatory disorders. J Endocrinol 201:309–320CrossRefPubMedGoogle Scholar
  11. 11.
    Thomson BM, Mundy GR, Chambers TJ (1987) Tumor necrosis factors alpha and beta induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol 138:775–779PubMedGoogle Scholar
  12. 12.
    Xia M, Sui Z (2009) Recent developments in CCR2 antagonists. Expert Opin Ther Pat 19:295–303CrossRefPubMedGoogle Scholar
  13. 13.
    Kim MS, Day CJ, Morrison NA (2005) MCP-1 is induced by receptor activator of nuclear factor-kB ligand, promotes human osteoclast fusion, and rescues granulocyte macrophage colony-stimulating factor suppression of osteoclast formation. J Biol Chem 280:16163–16169CrossRefPubMedGoogle Scholar
  14. 14.
    Sanchez-Sabate E, Alvarez L, Gil-Garay E, Munuera L, Vilaboa N (2009) Identification of differentially expressed genes in trabecular bone from the iliac crest of osteoarthritic patients. Osteoarthr Cartil 17:1106–1114CrossRefPubMedGoogle Scholar
  15. 15.
    Samaan MC, Obeid J, Nguyen T, Thabane L, Timmons BW (2013) Chemokine (CC motif) Ligand 2 is a potential biomarker of inflammation & physical fitness in obese children: a cross-sectional study. BMC Pediatr 13:47CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yang RZ, Lee MJ, Hu H, Pollin TI, Ryan AS, Nicklas BJ, Snitker S, Horenstein RBB, Hull K, Goldberg NH, Goldberg AP, Shuldiner AR, Fried SK, Gong DW (2006) Acute-phase serum amyloid A: an inflammatory adipokine and potential link between obesity and its metabolic complications. PLoS Med 3:e287CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang N, Ahsan MH, Purchio AF, West DB (2005) Serum amyloid A-luciferase transgenic mice: response to sepsis, acute arthritis, and contact hypersensitivity and the effects of proteasome inhibition. J Immunol 174:8125–8134CrossRefPubMedGoogle Scholar
  18. 18.
    Furlaneto CJ, Campa A (2000) A novel function of serum amyloid A: a potent stimulus for the release of tumor necrosis factor-α, interleukin-1β, and interleukin-8 by human blood neutrophil. Biochem Bioph Res Commun 268:405–408CrossRefGoogle Scholar
  19. 19.
    Boden G (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46:3–10CrossRefPubMedGoogle Scholar
  20. 20.
    Albert TS, Duchateau PN, Deeb SS, Pullinger CR, Cho MH, Heilbron DC, Malloy MJ, Kane JP, Brown BG (2005) Apolipoprotein LI is positively associated with hyperglycemia and plasma triglycerides in CAD patients with low HDL. J Lipid Res 46:469–474CrossRefPubMedGoogle Scholar
  21. 21.
    Duchateau PN, Movsesyan I, Yamashita S, Sakai N, Hirano KI, Schoenhaus SA, O’Connor-Kearns PM, Spencer SJ, Jaffe RB, Redberg RF, Ishida BY, Matsuzawa Y, Kane JP, Malloy MJ (2000) Plasma apolipoprotein L concentrations correlate with plasma triglycerides and cholesterol levels in normolipidemic, hyperlipidemic, and diabetic subjects. J Lipid Res 41:1231–1236PubMedGoogle Scholar
  22. 22.
    Goebeler V, Ruhe D, Gerke V, Rescher U (2006) Annexin A8 displays unique phospholipid and F-actin binding properties. FEBS Lett 580:2430–2434CrossRefPubMedGoogle Scholar
  23. 23.
    Lueck K, Greenwood J, Moss SE (2014) Regulation of RPE phenotype by annexin A8 and Wnt signalling. Invest Ophthalmol Vis Sci 55:706CrossRefGoogle Scholar
  24. 24.
    Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132:49–60CrossRefPubMedGoogle Scholar
  25. 25.
    Hsu TH, Jiang SY, Chan WL, Eckert RL, Scharadin TM, Chang TC (2014) Involvement of RARRES3 in the regulation of Wnt proteins acylation and signaling activities in human breast cancer cells. Cell Death Differ 22:801–814CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C (2005) Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8:727–738CrossRefPubMedGoogle Scholar
  27. 27.
    Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhang J, Qisheng T, Grosschedl R, Kim MS, Griffin T, Drissi H, Yang P, Chen J (2011) Roles of SATB2 in osteogenic differentiation and bone regeneration. Tissue Eng Part A 17:1767–1776CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Farinas I, Karsenty G, Grosschedl R (2006) SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 125:971–986CrossRefPubMedGoogle Scholar
  30. 30.
    Meng H, Tao Z, Weidong L, Huan W, Chunlei W, Zhe Z, Ning L, Wenbo W (2014) Sodium fluoride induces apoptosis through the downregulation of hypoxia-inducible factor-1α in primary cultured rat chondrocytes. Int J Mol Med 33:351–358PubMedGoogle Scholar
  31. 31.
    Ebisawa T, Tada K, Kitajima I, Tojo K, Sampath TK, Kawabata M, Miyazono K, Imamura T (1999) Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation. J Cell Sci 112:3519–3527PubMedGoogle Scholar
  32. 32.
    Hossain Z, Mohamed Ali SM, Ko HL, Xu J, Ng CP, Guo K, Qi Z, Ponniah S, Hong W, Hunziker W (2007) Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci 104:1631–1636CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yoshida CA, Furuichi T, Fujita T, Fukuyama R, Kanatani N, Kobayashi S, Satake M, Takada K, Komori T (2002) Core-binding factor β interacts with Runx2 and is required for skeletal development. Nat Genet 32:633–638CrossRefPubMedGoogle Scholar
  34. 34.
    Miller J, Horner A, Stacy T, Lowrey C, Lian JB, Stein G, Nuckolls GH, Speck NA (2002) The core-binding factor β subunit is required for bone formation and hematopoietic maturation. Nat Genet 32:645–649CrossRefPubMedGoogle Scholar
  35. 35.
    Friedl G, Schmidt H, Rehak I, Kostner G, Schauenstein K, Windhager R (2007) Undifferentiated human mesenchymal stem cells (hMSCs) are highly sensitive to mechanical strain: transcriptionally controlled early osteo-chondrogenic response in vitro. Osteoarthr Cartil 15:1293–1300CrossRefPubMedGoogle Scholar
  36. 36.
    Pregizer S, Artem B, Charles AG, Andres JG, Baruch F (2007) Identification of novel Runx2 targets in osteoblasts: cell type‐specific BMP‐dependent regulation of Tram2. J Cell Biochem 102:1458–1471CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Deepa Gandhi
    • 1
  • Pravin K. Naoghare
    • 1
  • Amit Bafana
    • 1
  • Krishnamurthi Kannan
    • 1
  • Saravanadevi Sivanesan
    • 1
  1. 1.Environmental Health DivisionCSIR-National Environmental Engineering Research Institute (NEERI)NagpurIndia

Personalised recommendations