Skip to main content
Log in

Role of Hydrogen Sulfide on Autophagy in Liver Injuries Induced by Selenium Deficiency in Chickens

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) is an indispensable trace mineral that was associated with liver injuries in animal models. Hydrogen sulfide (H2S) is involved in many liver diseases, and autophagy can maintain liver homeostasis with a stress stimulation. However, little is known about the correlation between H2S and autophagy in the liver injury chicken models induced by Se deficiency. In this study, we aimed to investigate the correlation between H2S and autophagy in the liver injury chicken models. We randomly divided 120 1-day-old chickens into two equal groups. The control group was fed with complete food with a Se content of 0.15 mg/kg, and the Se-deficiency group (lab group) was fed with a Se-deficient diet with a Se content of 0.033 mg/kg. When the time comes to 15, 25, and 35 days, the chickens were sacrificed (20 each). The liver tissues were gathered and examined for pathological observations, the mRNA and protein levels of H2S synthases (CSE, CBS, and 3-MST) and the mRNA and protein levels of autophagy-related genes. The results showed that the expression of CSE, CBS, and 3-MST and H2S production were higher in the lab group than in the control group. Swellings, fractures, and vacuolizations were visible in the mitochondria cristae in the livers of the lab group and autophagosomes were found as well. In addition, the expression of autophagy-related genes (ATG5, LC3-I, LC3-II, Beclin1, and Dynein) was higher in the lab group than in the control group (p < 0.05) while TOR decreased significantly in the lab group (p < 0.05). The results showed that H2S and autophagy were involved in the liver injury chicken models, and H2S was correlated with autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ulrich S, Lutz S, Savaskan NE (2004) The neurobiology of selenium: lessons from transgenic mice. J Nutr 134(4):707–710

    Google Scholar 

  2. McCann JC, Ames BN (2011) Adaptive dysfunction of selenoproteins from the perspective of the triage theory: why modest selenium deficiency may increase risk of diseases of aging. FASEB J 25(6):1793–1814

    Article  CAS  PubMed  Google Scholar 

  3. Hoffmann PR, Claude JLS, Hoffmann FW, Chang PS, Oana B, Qingping H, Tam EK, Berry MJ (2007) A role for dietary selenium and selenoproteins in allergic airway inflammation. J Immunol 179(5):3258–3267

    Article  CAS  PubMed  Google Scholar 

  4. Guo M, Lv T, Liu F, Yan H, Wei T, Cai H, Tian W, Zhang N, Wang Z, Xie G (2013) Dietary selenium influences calcium release and activation of MLCK in uterine smooth muscle of rats. Biol Trace Elem Res 154(1):127–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moustafa ME, Carlson BA, Anver MR, Gerd B, Nianxin Z, Ward JM, Perella CM, Hoffmann VJ, Keith R, Combs GF (2013) Selenium and selenoprotein deficiencies induce widespread pyogranuloma formation in mice, while high levels of dietary selenium decrease liver tumor size driven by TGFα. Plos One 8(2):e57389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. González-Pérez JM, González-Reimers E, Delavega-Prieto MJ, Viña-Rodríguez J, Galindo-Martín L, Alvisa-Negrín J, Santolaria-Fernández F (2011) Relative and combined effects of ethanol and protein deficiency on bone manganese and copper. Biol Trace Elem Res 147(1–3):226–232

    PubMed  Google Scholar 

  7. Osame S, Ohtani T, Ichijo S (1990) Studies on serum tocopherol and selenium levels and blood glutathione peroxidase activities in lambs with white muscle disease. Nippon Juigaku Zasshi Jpn J Vet Sci 52(4):705–710

    Article  CAS  Google Scholar 

  8. Xing Y, Liu Z, Yang G, Gao D, Niu X (2015) MicroRNA expression profiles in rats with selenium deficiency and the possible role of the Wnt/β-catenin signaling pathway in cardiac dysfunction. Int J Mol Med 35(1):143–152

    CAS  PubMed  Google Scholar 

  9. Li JL, Rui G, Shu L, Wang JT, Tang ZX, Xu SW (2010) Testicular toxicity induced by dietary cadmium in cocks and ameliorative effect by selenium. Biometals 23(4):695–705

    Article  CAS  PubMed  Google Scholar 

  10. Yao HD, Wu Q, Zhang ZW, Li S, Wang XL, Lei XG, Xu SW (2013) Selenoprotein W serves as an antioxidant in chicken myoblasts. Biochim Biophys Acta 1830(4):3112–3120. doi:10.1016/j.bbagen.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  11. Burk RF, Hill KE, Motley AK (2003) Selenoprotein metabolism and function: evidence for more than one function for selenoprotein P. J Nutr 133(5 Suppl 1):1517S–1520S

    CAS  PubMed  Google Scholar 

  12. Zhang ZW, Zhang JL, Zhang YH, Wang QH, Li S, Wang XL, Xu SW (2013) Effect of oxygen free radicals and nitric oxide on apoptosis of immune organ induced by selenium deficiency in chickens. Biol Met 26(2):355–365

    CAS  Google Scholar 

  13. Sumpter R, Levine B (2010) Autophagy and innate immunity: triggering, targeting and tuning. Semin Cell Dev Biol 21(21):699–711

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schneider PD, Gorschboth CM (1983) Limiting ischemic liver injury by interfering with lysosomal autophagy. J Surg Res 34(6):550–554

    Article  CAS  PubMed  Google Scholar 

  15. Kudchodkar SB, Levine B (2009) Viruses and autophagy. Rev Med Virol 19(6):359–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yan C, Ugir Hossain S, Yi Z, Xingcong R, Li Z, Huber-Keener KJ, Yuan-Wan S, Jason L, Shantu A, Sharma AK (2012) Rational incorporation of selenium into temozolomide elicits superior antitumor activity associated with both apoptotic and autophagic cell death. Plos One 7(4):40–41

    Google Scholar 

  17. Santosh K, Mehta SL, Li PA (2012) Glutamate induces mitochondrial dynamic imbalance and autophagy activation: preventive effects of selenium. Plos One 7(6):e39382

    Article  Google Scholar 

  18. Rui W (2014) Gasotransmitters: growing pains and joys. Trends Biochem Sci 39(5):227–232

    Article  Google Scholar 

  19. Olas B (2015) Hydrogen sulfide in signaling pathways. Clin Chim Acta 439C:212–218

    Article  Google Scholar 

  20. Searcy DG, Lee SH (1998) Sulfur reduction by human erythrocytes. J Exp Zool 282(3):310–322

    Article  CAS  PubMed  Google Scholar 

  21. Lowicka E, Beltowski J (2007) Hydrogen sulfide (H2S)—the third gas of interest for pharmacologists. Pharmacol Rep 59(1):4–24

    CAS  PubMed  Google Scholar 

  22. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20(21):6008–6016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yasuo N, Mamiko T, Jun-Ichiro O, Hideo K (2004) Hydrogen sulfide induces calcium waves in astrocytes. FASEB J 18(3):557–559

    Google Scholar 

  24. Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ, Anuar FB, Whiteman M, Salto-Tellez M, Moore PK (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 19(9):1196–1198

    CAS  PubMed  Google Scholar 

  25. Mani S, Cao W, Wu L, Wang R (2014) Hydrogen sulfide and the liver. Nitric Oxide Biol Chem 41(18):62–71

    Article  CAS  Google Scholar 

  26. Cheng P, Wang F, Chen K, Shen M, Dai W, Xu L, Zhang Y, Wang C, Li J, Yang J (2014) Hydrogen sulfide ameliorates ischemia/reperfusion-induced hepatitis by inhibiting apoptosis and autophagy pathways. Mediat Inflamm 2014(2):142

    Google Scholar 

  27. Li L, Jiang HK, Li YP, Guo YP (2015) Hydrogen sulfide protects spinal cord and induces autophagy via miR-30c in a rat model of spinal cord ischemia-reperfusion injury. J Biomed Sci 22:50. doi:10.1186/s12929-015-0135-1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu C (2015) The role of nitric oxide and autophagy in liver injuries induced by selenium deficiency in chickens. RSC Adv 5(62):50549–50556

    Article  CAS  Google Scholar 

  29. Ji-He LI, Tong DX, Xin-Bing XU, Han BQ, Wang XC (2011) Changes and significance of myocardial H2S/CSE system in endotoxemic rats. J Harbin Med Univ

  30. Jr BR, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA (2008) A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13(1):25–97

    Google Scholar 

  31. Reiffenstein RJ, And WCH, Roth SH (1992) Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32(32):109–134

    Article  CAS  PubMed  Google Scholar 

  32. Yoshinori M, Norihiro S, Yuki O, Hideo K (2013) Hydrogen sulfide is produced by cystathionine γ-lyase at the steady-state low intracellular Ca2+ concentrations. Biochem Biophys Res Commun 431(2):131–135

    Article  Google Scholar 

  33. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16(3):1066–1071

    CAS  PubMed  Google Scholar 

  34. Yoshinori M, Norihiro S, Yuka K, Noriyuki N, Masahiro Y, Hideo K (2011) Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J Biol Chem 286(45):39379–39386

    Article  Google Scholar 

  35. Huang CW, Moore PK (2015) H2S synthesizing enzymes: biochemistry and molecular aspects. Handb Exp Pharmacol 230:3–25

    Article  CAS  PubMed  Google Scholar 

  36. Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Jr LJ, Darley-Usmar VM, Kraus DW (2005) Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem 341(1):40–51

    Article  CAS  PubMed  Google Scholar 

  37. Chen Y, Mo HZ, Zheng MY, Xian M, Qi ZQ, Li YQ, Hu LB, Chen J, Yang LF (2014) Selenium inhibits root elongation by repressing the generation of endogenous hydrogen sulfide in Brassica rapa. Plos One 9(10):e110904

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhou X, An G, Chen J (2014) Hydrogen sulfide improves left ventricular function in smoking rats via regulation of apoptosis and autophagy. Apoptosis Int J Prog Cell Death 19(6):998–1005

    Article  CAS  Google Scholar 

  39. Bekpinar S, Unlucerci Y, Uysal M, Gurdol F (2014) Propargylglycine aggravates liver damage in LPS-treated rats: possible relation of nitrosative stress with the inhibition of H2S formation. Pharmacol Rep 66(5):897–901

    Article  CAS  PubMed  Google Scholar 

  40. Yao H, Liu W, Zhao W, Fan R, Zhao X, Khoso PA, Zhang Z, Xu S (2014) Different responses of selenoproteins to the altered expression of selenoprotein W in chicken myoblasts. RSC Adv 4(109):64032–64042

    Article  CAS  Google Scholar 

  41. Jiang ZH (2015) SelW regulates inflammation-related cytokines in response to H2O2 in Se-deficient chicken liver. RSC Adv 5(47):37896–37905

    Article  CAS  Google Scholar 

  42. Zhang Z, Wang J, Li J, Xu S (2011) Telomerase-mediated apoptosis of chicken lymphoblastoid tumor cell line by lanthanum chloride. Biol Trace Elem Res 144(1–3):657–667

    Article  CAS  PubMed  Google Scholar 

  43. Matsumoto K, Ui I, Satoh K, Tobe T, Ushio F, Endo K (2002) Evaluation of oxidative damage in the liver of selenium-deficient rats. Redox Rep 7(5):351–354

    Article  CAS  PubMed  Google Scholar 

  44. Burk RF, Hill KE, Nakayama A, Mostert V, Levander XA, Motley AK, Johnson DA, Johnson JA, Freeman ML, Austin LM (2008) Selenium deficiency activates mouse liver Nrf2-ARE but vitamin E deficiency does not. Free Radic Biol Med 44(8):1617–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng WH, Quimby FW, Lei XG (2003) Impacts of glutathione peroxidase-1 knockout on the protection by injected selenium against the pro-oxidant-induced liver aponecrosis and signaling in selenium-deficient mice. Free Radic Biol Med 34(34):918–927

    Article  CAS  PubMed  Google Scholar 

  46. Codogno P, Meijer AJ (2013) Autophagy in the liver. J Hepatol 59(2):389–391

    Article  PubMed  Google Scholar 

  47. Czaja MJ, Wen-Xing D, Donohue TM, Friedman SL, Jae-Sung K, Masaaki K, Lemasters JJ, Antoinette L, Lin JD, Jing-Hsiung James O (2013) Functions of autophagy in normal and diseased liver. Autophagy 9(8):1131–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu JC, Wang FZ, Tsai ML, Lo CY, Badmaev V, Ho CT, Wang YJ, Pan MH (2015) Se-allylselenocysteine induces autophagy by modulating the AMPK/mTOR signaling pathway and epigenetic regulation of PCDH17 in human colorectal adenocarcinoma cells. Mol Nutr Food Res 59(12):2511–2522. doi:10.1002/mnfr.201500373

    Article  CAS  PubMed  Google Scholar 

  49. Shibutani ST, Saitoh T, Nowag H, Münz C, Yoshimori T (2015) Autophagy and autophagy-related proteins in the immune system. Nat Immunol 16(10):1014–1024

    Article  CAS  PubMed  Google Scholar 

  50. Mizushima N, Sugita H, Yoshimori T, Ohsumi Y (1998) A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem 273(51):33889–33892

    Article  CAS  PubMed  Google Scholar 

  51. Mcleland CB, Rodriguez J, Stern ST (2011) Autophagy monitoring assay: qualitative analysis of MAP LC3-I to II conversion by immunoblot. Methods Mol Biol 697:199–206

    Article  CAS  PubMed  Google Scholar 

  52. Hwa JC, Seung-Hyun R, Jing C, Neil Michael O, Do-Hyung K (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295

    Article  Google Scholar 

  53. Brinda R, Abraham AA, Sara I, Zdenek B, Coralie V, O’Kane CJ, Brown SDM, Rubinsztein DC (2005) Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet 37(7):771–776

    Article  Google Scholar 

  54. Jiang H, Jian X, Bo K, Zhu X, Ni X, Wang Z (2015) PI3K/SGK1/GSK3β signaling pathway is involved in inhibition of autophagy in neonatal rat cardiomyocytes exposed to hypoxia/reoxygenation by hydrogen sulfide. Exp Cell Res. doi:10.1016/j.yexcr.2015.07.005

    PubMed Central  Google Scholar 

  55. Kundu S, Pushpakumar S, Khundmiri SJ, Sen U (2014) Hydrogen sulfide mitigates hyperglycemic remodeling via liver kinase B1-adenosine monophosphate-activated protein kinase signaling. Biochim Biophys Acta 1843(12):2816–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dawei W, Yong M, Zhengtian L, Kai K, Xueying S, Shangha P, Jizhou W, Huayang P, Lianxin L, Desen L (2012) The role of AKT1 and autophagy in the protective effect of hydrogen sulphide against hepatic ischemia/reperfusion injury in mice. Autophagy 8(6):954–962

    Article  Google Scholar 

Download references

Authors’ Contributions

All other authors have read the manuscript and have agreed to submit it in its current form for consideration for publication in the journal. No papers will be processed without this requisite.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Ying or Xing Jun.

Ethics declarations

All procedures used in the present study were approved by the Institutional Animal Care and Use Committee of Northeast Agricultural University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent was obtained from all individual participants included in this study.

Additional information

Wang Wenzhong and Zhang Tong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenzhong, W., Tong, Z., Hongjin, L. et al. Role of Hydrogen Sulfide on Autophagy in Liver Injuries Induced by Selenium Deficiency in Chickens. Biol Trace Elem Res 175, 194–203 (2017). https://doi.org/10.1007/s12011-016-0752-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0752-x

Keywords

Navigation