Skip to main content
Log in

Long-Term Supplementation with Chromium Malate Improves Short Chain Fatty Acid Content in Sprague-Dawley Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Our previous study showed that chromium malate improved the composition of intestinal flora, glycometabolism, glycometabolism-related enzymes, and lipid metabolism in type 2 diabetes mellitus (T2DM) rats. The present study was designed to evaluate the effect of chromium malate with long-term supplementation on short chain fatty acid (SCFA) content in Sprague-Dawley rats. The samples were analyzed by gas chromatography with high linearity (R 2 ≥ 0.9995), low quantification limit (0.011–0.070 mM), and satisfactory recoveries. The method was simple and environmentally friendly. The acetic content in cecum of 3-month control group was significantly higher than that of 1-year control group. When compared with 1-year control group, chromium malate (at a dose of 20.0 μg Cr/kg bw) could significantly increase acetic, propionic, i-butyric butyric, butyric, i-valeric, valeric, and n-caproic levels. The acetic, propionic, i-butyric, valeric, and n-caproic contents of 1-year chromium malate group (at a dose of 20.0 μg Cr/kg bw) had a significant improvement when compared with 1-year chromium picolinate group. Acetic, propionic, and butyric contained approximately 91.65 % of the total SCFAs in 1-year group. The results indicated that the improvement of chromium malate on short chain fatty acid content change was better than that of chromium picolinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672

    Article  CAS  PubMed  Google Scholar 

  2. Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62(1):67–72

    Article  CAS  PubMed  Google Scholar 

  3. Henningsson Å, Nyman M, Björck I (2002) Short-chain fatty acid content in the hindgut of rats fed various composite foods and commercial dietary fibre fractions from similar sources. J Sci Food Agric 82(4):385–393

    Article  CAS  Google Scholar 

  4. Havenaar R (2011) Intestinal health functions of colonic microbial metabolites: a review. Benefic Microbes 2(2):103–114

    Article  CAS  Google Scholar 

  5. Zambell KL, Fitch MD, Fleming SE (2003) Acetate and butyrate are the major substrates for de novo lipogenesis in rat colonic epithelial cells. J Nutr 133(11):3509–3515

    CAS  PubMed  Google Scholar 

  6. Gordon MJ, Crabtree B (1992) The effects of propionate and butyrate on acetate metabolism in rat hepatocytes. Int J Biochem 24(7):1029–1031

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Li X, Zheng X, Wang D (2013) Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici. Water Res 47(2):615–622

    Article  CAS  PubMed  Google Scholar 

  8. Luo J, Feng L, Chen Y, Sun H, Shen Q, Li X, Chen H (2015) Alkyl polyglucose enhancing propionic acid enriched short-chain fatty acids production during anaerobic treatment of waste activated sludge and mechanisms. Water Res 73:332–341

    Article  CAS  PubMed  Google Scholar 

  9. Scharlau D, Borowicki A, Habermann N, Hofmann T, Klenow S, Miene C, Munjal U, Stein K, Glei M (2009) Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat Res 682(1):39–53

    Article  CAS  PubMed  Google Scholar 

  10. Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40(3):235–243

    Article  CAS  PubMed  Google Scholar 

  11. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) The role of short-chain fatty acids in health and disease. In: Alt FW (ed) Adv Immunol 121:91–119

  12. McGrath LT, Weir CD, Maynard S, Rowlands BJ (1992) Gas–liquid chromatographic analysis of volatile short chain fatty acids in fecal samples as pentafluorobenzyl esters. Anal Biochem 207(2):227–230

    Article  CAS  PubMed  Google Scholar 

  13. Arellano M, Jomard P, El Kaddouri S, Roques C, Nepveu F, Couderc F (2000) Routine analysis of short-chain fatty acids for anaerobic bacteria identification using capillary electrophoresis and indirect ultraviolet detection. J Chromatogr B 741(1):89–100

    Article  CAS  Google Scholar 

  14. Garcia A, Olmo B, Lopez-Gonzalvez A, Cornejo L, Rupérez FJ, Barbas C (2008) Capillary electrophoresis for short chain organic acids in faeces: reference values in a Mediterranean elderly population. J Pharm Biomed Anal 46(2):356–361

    Article  CAS  PubMed  Google Scholar 

  15. Zhao G, Nyman M, Jönsson JA (2006) Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed Chromatogr 20(8):674–682

    Article  CAS  PubMed  Google Scholar 

  16. Kotani A, Miyaguchi Y, Kohama M, Ohtsuka T, Shiratori T, Kusu F (2009) Determination of short-chain fatty acids in rat and human feces by high-performance liquid chromatography with electrochemical detection. Anal Sci 25(8):1007–1011

    Article  CAS  PubMed  Google Scholar 

  17. Garcia-Villalba R, Gimenez-Bastida JA, Garcia-Conesa MT, Tomas-Barberan FA, Carlos Espin J, Larrosa M (2012) Alternative method for gas chromatography–mass spectrometry analysis of short-chain fatty acids in faecal samples. J Sep Sci 35(15):1906–1913

    Article  CAS  PubMed  Google Scholar 

  18. Gandhi S, Kadrmas J, Št’ávová J, Kubátová A, Muggli D, Seames WS, Sadrameli SM, Tande BM (2012) Extraction of fatty acids from noncatalytically cracked triacylglycerides with water and aqueous sodium hydroxide. Sep Sci Technol 47(1):66–72

    Article  CAS  Google Scholar 

  19. Zijlstra JB, Beukema J, Wolthers BG, Byrne BM, Groen A, Ankert JD (1977) Pretreatment methods prior to gas chromatographic analysis of volatile fatty acids from faecal samples. Clin Chim Acta 78(2):243–250

    Article  CAS  PubMed  Google Scholar 

  20. Ewaschuk JB, Zello GA, Naylor JM, Brocks DR (2002) Metabolic acidosis: separation methods and biological relevance of organic acids and lactic acid enantiomers. J Chromatogr B 781(1–2):39–56

    Article  CAS  Google Scholar 

  21. Chen HM, Lifschitz CH (1989) Preparation of fecal samples for assay of volatile fatty acids by gas–liquid chromatography and high-performance liquid chromatography. Clin Chem 35(1):74–76

    CAS  PubMed  Google Scholar 

  22. Thevis M, Thomas A, Schaenzer W (2013) Targeting prohibited substances in doping control blood samples by means of chromatographic-mass spectrometric methods. Anal Bioanal Chem 405(30):9655–9667

    Article  CAS  PubMed  Google Scholar 

  23. EFSA Panel on Dietetic Products, Nutrition, and Allergies (2014) EFSA J 12:3845

  24. Peruzzu A, Solinas G, Asara Y, Forte G, Bocca B, Tolu F, Malaguarnera L, Montella A, Madeddu R (2015) Association of trace elements with lipid profiles and glycaemic control in patients with type 1 diabetes mellitus in northern Sardinia, Italy: an observational study. Chemosphere 132:101–107

    Article  CAS  PubMed  Google Scholar 

  25. Huang S, Peng W, Jiang X, Shao K, Xia L, Tang Y, Qiu J (2014) The effect of chromium picolinate supplementation on the pancreas and macroangiopathy in type II diabetes mellitus rats. J Diabetes Res 2014:717219–717227

    PubMed  PubMed Central  Google Scholar 

  26. Sahin K, Tuzcu M, Orhan C, Sahin N, Kucuk O, Ozercan IH, Juturu V, Komorowski JR (2013) Anti-diabetic activity of chromium picolinate and biotin in rats with type 2 diabetes induced by high-fat diet and streptozotocin. Br J Nutr 110(2):197–205

    Article  CAS  PubMed  Google Scholar 

  27. Li F, Wu X, Zou Y, Zhao T, Zhang M, Feng W, Yang L (2012) Comparing anti-hyperglycemic activity and acute oral toxicity of three different trivalent chromium complexes in mice. Food Chem Toxicol 50(5):1623–1631

    Article  CAS  PubMed  Google Scholar 

  28. Li F, Wu X, Zhao T, Zhang M, Zhao J, Mao G, Yang L (2011) Anti-diabetic properties of chromium citrate complex in alloxan-induced diabetic rats. J Trace Elem Med Biol 25(4):218–224

    Article  CAS  PubMed  Google Scholar 

  29. Ghadieh HE, Smiley ZN, Kopfman MW, Najjar MG, Hake MJ, Najjar SM (2015) Chlorogenic acid/chromium supplement rescues diet-induced insulin resistance and obesity in mice. Nutr Metab 12(1):1–7

    Article  CAS  Google Scholar 

  30. Feng W, Zhang W, Zhao T, Mao G, Wang W, Wu X, Zhou Z, Huang J, Bao Y, Yang L, Wu X (2015) Evaluation of the reproductive toxicity, glycometabolism, glycometabolism-related enzyme levels and lipid metabolism of chromium malate supplementation in Sprague–Dawley rats. Biol Trace Elem Res 168(1):150–168

    Article  CAS  PubMed  Google Scholar 

  31. Xu J, Zhao M, Qian D, Shang E-x, Jiang S, Guo J, Duan J-a, Du L (2014) Comparative metabolism of Radix scutellariae extract by intestinal bacteria from normal and type 2 diabetic mice in vitro. J Ethnopharmacol 153(2):368–374

    Article  CAS  PubMed  Google Scholar 

  32. Cani PD, Bibiloni R, Knauf C, Neyrinck AM, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481

    Article  CAS  PubMed  Google Scholar 

  33. Wu X-Y, Li F, Xu W-D, Zhao J-L, Zhao T, Liang L-H, Yang L-Q (2011) Anti-hyperglycemic activity of chromium(III) malate complex in alloxan-induced diabetic rats. Biol Trace Elem Res 143(2):1031–1043

    Article  CAS  PubMed  Google Scholar 

  34. Feng W, Zhao T, Mao G, Wang W, Feng Y, Li F, Zheng D, Wu H, Jin D, Yang L (2015) Type 2 diabetic rats on diet supplemented with chromium malate show improved glycometabolism, glycometabolism-related enzyme levels and lipid metabolism. Plos One 10

  35. Li C, Ding Q, Nie S-P, Zhang Y-S, Xiong T, Xie M-Y (2014) Carrot juice fermented with lactobacillus plantarum ncu116 ameliorates type 2 diabetes in rats. J Agric Food Chem 62(49):11884–11891

    Article  CAS  PubMed  Google Scholar 

  36. Administration FA (USFDA) (2001) Guidance for industry: bioanalytical method validation. Fed Regist 66(4):206–207

    Google Scholar 

  37. Han J, Lin K, Sequeira C, Borchers CH (2015) An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 854:86–94

    Article  CAS  PubMed  Google Scholar 

  38. Feng W, Mao G, Li Q, Wang W, Chen Y, Zhao T, Li F, Zou Y, Wu H, Yang L, Wu X (2015) Effects of chromium malate on glycometabolism, glycometabolism-related enzyme levels and lipid metabolism in type 2 diabetic rats: a dose–response and curative effects study. J Diabetes Investig 6(4):396–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng W, Wu H, Li Q, Zhou Z, Chen Y, Zhao T, Feng Y, Mao G, Li F, Yang L, Wu X (2015) Evaluation of 90-day repeated dose oral toxicity, glycometabolism, learning and memory ability, and related enzyme of chromium malate supplementation in Sprague–Dawley rats. Biol Trace Elem Res 168(1):181–195

    Article  CAS  PubMed  Google Scholar 

  40. Wang L, Zhang J, Guo Z, Kwok L, Ma C, Zhang W, Lv Q, Huang W, Zhang H (2014) Effect of oral consumption of probiotic Lactobacillus planatarum P-8 on fecal microbiota, SIgA, SCFAs, and TBAs of adults of different ages. Nutrition 30(7–8):776–783

    Article  CAS  PubMed  Google Scholar 

  41. Zhang H (2012) Study on the preparation and properties of resistant amylase and its application. University of Jiangnan

Download references

Acknowledgments

This work was supported financially by Specialized Research Fund for the Natural Science Foundation of China (31271850) and Research Foundation for Advanced Talents of Jiangsu University (15JDG146).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liuqing Yang or Liang Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Huiyu Wu and Weiwei Feng contributed to this article equally and are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Feng, W., Mao, G. et al. Long-Term Supplementation with Chromium Malate Improves Short Chain Fatty Acid Content in Sprague-Dawley Rats. Biol Trace Elem Res 174, 121–131 (2016). https://doi.org/10.1007/s12011-016-0684-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0684-5

Keywords

Navigation