Skip to main content
Log in

In vitro Assessment of Hg Toxicity in Hepatocytes from Heat-Stressed Atlantic Salmon

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Global warming may alter the bioavailability of contaminants in aquatic environments. In this work, mercury (Hg2+) toxicity was studied in cells obtained from Atlantic salmon smolt kept at 15 °C (optimal growth temperature) for 3 months or at a stepwise increase to 20 °C (temperature-stress) during 3 months prior to cell harvest to evaluate whether acclimation temperature affects Hg toxicity. To examine possible altered dietary requirements in warmer seas, one group of fish following the stepwise temperature regimes was fed a diet spiked with antioxidants. Atlantic salmon hepatocytes were exposed in vitro to 0, 1.0, or 100 μM Hg2+ for 48 h. Cytotoxicity, determined as electrical impedance changes with the xCELLigence system, and transcriptional responses, determined with RT-qPCR, were assessed as measures of toxicity. The results showed that inorganic Hg at a concentration up to 100 μM is not cytotoxic to Atlantic salmon hepatocytes. Significance and directional responses of the 18 evaluated target genes suggest that both Hg and temperature stress affected the transcription of genes encoding proteins involved in the protection against ROS-generated oxidative stress. Both stressors also affected the transcription of genes linked to lipid metabolism. Spiking the diet with antioxidants resulted in higher concentrations of Se and vitamin C and reduced concentration of Hg in the liver in vivo, but no interactions were seen between the dietary supplementation of antioxidants and Hg toxicity in vitro. In conclusion, no evidence was found suggesting that inorganic Hg is more toxic in cells harvested from temperature-stressed fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. UNEP (2013) Global mercury assessment 2013: sources, emissions, releases and environmental transport. UNEP Chemicals Branch, Geneva

    Google Scholar 

  2. Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annual Rev Ecol Systemat 29:543–566

    Article  Google Scholar 

  3. Chapman L, Chan HM (2000) The influence of nutrition on methyl mercury intoxication. Environ Health Perspect 108:29–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Diez S (2009) Human health effects of methylmercury exposure. Rev Environ Contam Toxicol 198:111–132

    CAS  PubMed  Google Scholar 

  5. Olsvik PA, Lindgren M, Maage A (2013) Mercury contamination in deep-water fish: transcriptional responses in tusk (Brosme brosme) from a fjord gradient. Aquat Toxicol 144:172–185

    Article  PubMed  Google Scholar 

  6. Julshamn K, Frantzen S, Valdersnes S, Nilsen B, Maage A, Nederaas K (2011) Concentration of mercury, arsenic, cadmium and lead in fillets of Greenland halibut (Reinhardtius hippoglossoides) caught off the coast of Northern Norway. Mar Biol Res 7:733–745

    Article  Google Scholar 

  7. Maage A, Bjelland O, Olsvik P, Nilsen B, Julshamn K (2012) Contaminants in fish and seafood products 2011. Miljøgifter i fisk og fiskevarer 2011: Kvikksølv i djupvassfisk og skaldyr frå hardangerfjorden samt miljøgifter i marine oljer. NIFES report. In Norwegian, Summary in English, Bergen 2012:1–31

    Google Scholar 

  8. Kvangarsnes K, Frantzen S, Julshamn K, Sæthre LJ, Nedreaas K, Maage A (2012) Distribution of mercury in a gadoid fish species, tusk (Brosme brosme), and its implication for food safety. J Food Sci Engin 2:603–615

    CAS  Google Scholar 

  9. Kidd K, Batchelar K (2012) Mercury. In: Wood CM, Farrell AP, Brauner CJ (eds) Homeostasis and toxicology of non-essential metals. Academic Press, Amsterdam, pp. 237–295

    Google Scholar 

  10. Grieb TM, Driscoll CT, Gloss SP, Schofield CL, Bowie GL, Porcella DB (1990) Factors affecting mercury accumulation in fish in the upper Michigan peninsula. Environ Toxicol Chem 9:919–930

    Article  CAS  Google Scholar 

  11. Bloom NS (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49:1010–1017

    Article  CAS  Google Scholar 

  12. Ceccatelli S, Dare E, Moors M (2010) Methylmercury-induced neurotoxicity and apoptosis. Chem Biol Interact 188:301–308

    Article  CAS  PubMed  Google Scholar 

  13. Gonzalez P, Dominique Y, Massabuau JC, Boudou A, Bourdineaud JP (2005) Comparative effects of dietary methylmercury on gene expression in liver, skeletal muscle, and brain of the zebrafish (Danio rerio). Environ Sci Technol 39:3972–3980

    Article  CAS  PubMed  Google Scholar 

  14. Klaper R, Rees CB, Drevnick P, Weber D, Sandheinrich M, Carvan MJ (2006) Gene expression changes related to endocrine function and decline in reproduction in fathead minnow (Pimephales promelas) after dietary methylmercury exposure. environ. Health Perspect 114:1337–1343

    Article  CAS  Google Scholar 

  15. Klaper R, Carter BJ, Richter CA, Drevnick PE, Sandheinrich MB, Tillitt DE (2008) Use of a 15 k gene microarray to determine gene expression changes in response to acute and chronic methylmercury exposure in the fathead minnow Pimephales promelas Rafinesque. J Fish Biol 72:2207–2280

    Article  CAS  Google Scholar 

  16. Berg K, Puntervoll P, Valdersnes S, Goksøyr A (2010) Responses in the brain proteome of Atlantic cod (Gadus morhua) exposed to methylmercury. Aquat Toxicol 100:51–65

    Article  CAS  PubMed  Google Scholar 

  17. Ung CY, Lam SH, Hlaing MM, Winata CL, Korzh S, Mathavan S, Gong Z (2010) Mercury-induced hepatotoxicity in zebrafish: in vivo mechanistic insight from transcriptome analysis, phenotype anchoring and targeted gene expression avlidation. BMC Genomics 11:212

    Article  PubMed  PubMed Central  Google Scholar 

  18. Richter CA, Garcia-Reyero N, Martyniuk C, Knoebl I, Pope M, Wright-Osment MK, Denslow ND, Tillitt DE (2011) Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury. Environ Toxicol Chem 30:301–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Olsvik PA, Amlund H, Torstensen BE (2011a) Dietary lipids modulate methylmercury toxicity in Atlantic salmon. Food Chem Toxicol 49:3258–3271

    Article  CAS  PubMed  Google Scholar 

  20. Olsvik PA, Brattås M, Lie KK, Goksøyr A (2011b) Transcriptional responses in juvenile Atlantic cod (Gadus morhua) after exposure to mercury-contaminated sediments obtained near the wreck of the German WW2 submarine U-864, and from Bergen Harbor, Western Norway. Chemosphere 83:552–563

    Article  CAS  PubMed  Google Scholar 

  21. Nøstbakken OJ, Martin SA, Cash P, Torstensen BE, Amlund H, Olsvik PA (2012a) Dietary methylmercury alters the proteome in Atlantic salmon (Salmo salar) kidney. Aquat Toxicol 108:70–77

    Article  PubMed  Google Scholar 

  22. Nøstbakken OJ, Bredal IL, Olsvik PA, Huang TS, Torstensen BE (2012b) Effect of marine omega 3 fatty acids on methylmercury-induced toxicity in fish and mammalian cells in vitro. J Biomed Biotechnol Article ID 417652, 13 pages, doi:10.1155/2012/417652

  23. Cambier S, Gonzalez P, Durrieu G, Maury-Brachet R, Boudou A, Bourdineaud JP (2010) Serial analysis of gene expression in the skeletal muscles of zebrafish fed with a methylmercury-contaminated diet. Environ Sci Technol 44:469–475

    Article  CAS  PubMed  Google Scholar 

  24. Schiedek D, Sundelin B, Readman JW, Macdonald RW (2007) Interactions between climate change and contaminants. Mar Poll Bull 54:1845–1856

    Article  CAS  Google Scholar 

  25. Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35(6):971–986

    Article  CAS  PubMed  Google Scholar 

  26. Lovett RA (2010) A warming Earth could mean stronger toxins: Climate change may force a rethink of toxicity measurements. Published online 9 November 2010, Nature, doi:10.1038/news.2010.593

  27. Landis WG, Durda JL, Brooks ML, Chapman PM, Menzie CA, Stahl RG, Stauber JL (2013) Ecological risk assessment in the context of global climate change. Environ Toxicol Chem 32:79–92

    Article  CAS  PubMed  Google Scholar 

  28. Hooper MJ, Ankley GT, Cristol DA, Maryoung LA, Noyes PD, Pinkerton KE (2013) Interactions between chemical and climate stressors: a role for mechanistic toxicology in assessing climate change risks. Environ Toxicol Chem 32:32–48

    Article  CAS  PubMed  Google Scholar 

  29. Somero GN (2004) Adaptation of enzymes to temperature: searching for basic "strategies". Comp Biochem Physiol B – Biochem Mol Biol 139:321–333

    Article  PubMed  Google Scholar 

  30. Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J Exp Biol 213:912–920

    Article  CAS  PubMed  Google Scholar 

  31. Kennedy CJ, Walsh PJ (1997) Effects of temperature on xenobiotic metabolism. In: Wood CM, McDonald DG (eds) Global warming—implications for Freshwater and Marine fish. Cambridge University Press, Cambridge, pp. 303–324

    Chapter  Google Scholar 

  32. Hevrøy EM, Hunskar C, de Gelder S, Shimizu M, Waagbø R, Breck O, Takle H, Sussort S, Hansen T (2013) GH-IGF system regulation of attenuated muscle growth and lipolysis in Atlantic salmon reared at elevated sea temperatures. J Comp Physiol B 183:243–259

    Article  PubMed  Google Scholar 

  33. Olsvik PA, Berntssen MH, Waagbø R, Hevrøy E, Søfteland L (2015) The mining chemical polydadmac is cytotoxic but does not interfere with Cu-induced toxicity in Atlantic salmon hepatocytes. Toxicol in Vitro 30:492–505

    Article  CAS  PubMed  Google Scholar 

  34. Olsvik PA, Søfteland L, Hevrøy E, Rasinger J, Waagbø R (2016) Fish pre-acclimation temperature affects cadmium toxicity in Atlantic salmon hepatocytes. J Therm Biol 57:21–34

    Article  CAS  PubMed  Google Scholar 

  35. Søfteland L, Eide I, Olsvik PA (2009) Factorial design applied for multiple endpoint toxicity evaluation in Atlantic salmon (Salmo salar L.) hepatocytes. Toxicol in Vitro 23:1455–1464

    Article  PubMed  Google Scholar 

  36. Abassi YA, Xi B, Zhang W, Ye P, Kirstein SL, Gaylord MR, Feinstein SC, Wang X, Xu X (2009) Kinetic cell-based morphological screening: prediction of mechanism of compound action and off-target effects. Chem Biol 16:712–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, RESEARCH0034

  38. Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity)

  39. ISO (2009) ISO 10993–5:2009—Biological evaluation of medical devices Part 5. Tests for in vitro cyto- toxicity. Available: http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber= 36406. Accessed 2014 March 15

  40. Janz DM (2012) Selenium. In: Wood CM, Farrell AP, Brauner CJ (eds) Homeostasis and toxicology of essential metals. Academic Press, Amsterdam, pp. 327–374

    Google Scholar 

  41. Bjerregaard P, Andersen BW, Rankin JC (1999) Retention of methyl mercury and inorganic mercury in rainbow trout Oncorhynchus mykiss (W): effect of dietary selenium. Aquat Toxicol 45:171–180

    Article  CAS  Google Scholar 

  42. Penglase S, Hamre K, Ellingsen S (2014) Selenium and mercury have a synergistic negative effect on fish reproduction. Aquat Toxicol 149:16–24

    Article  CAS  PubMed  Google Scholar 

  43. Segner H, Lenz D, Hanke W, Schuurmann G (1994) Cytotoxicity of metals toward rainbow-trout R1 cell-line. Environ Toxic Water 9:273–279

    Article  CAS  Google Scholar 

  44. Minghetti M, Leaver MJ, Taggart JB, Casadei E, Auslander M, Tom M, George SG (2011) Copper induces Cu-ATPase ATP7A mRNA in a fish cell line, SAF1. Comp Biochem Physiol C-Toxicol Pharmacol 154:93–99

    Article  PubMed  Google Scholar 

  45. Morcillo P, Esteban MA, Cuesta A (2016) Heavy metals produce toxicity, oxidative stress and apoptosis in the marine teleost fish SAF-1 cell line. Chemosphere 144:225–233

    Article  CAS  PubMed  Google Scholar 

  46. Segner H (1998) Fish cell lines as a tool in aquatic toxicology. EXS 86:1–38

    CAS  PubMed  Google Scholar 

  47. VI L, TV B (2006) Temperature increase results in oxidative stress in goldfish tissues. 1. Indices of oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 143:30–35

    Article  Google Scholar 

  48. Leggatt RA, Brauner CJ, Schulte PM, Iwama GK (2007) Effects of acclimation and incubation temperature on the glutathione antioxidant system in killifish and RTH-149 cells. Comp Biochem Physiol A Mol Integr Physiol 146:317–326

    Article  CAS  PubMed  Google Scholar 

  49. Castro C, Perez-Jimenez A, Guerreiro I, Peres H, Castro-Cunha M, Oliva-Teles A (2012) Effects of temperature and dietary protein level on hepatic oxidative status of Senegalese sole juveniles (Solea senegalensis). Comp Biochem Physiol Part A Mol Integr Physiol 163:372–378

    Article  CAS  Google Scholar 

  50. Banh S, Wiens L, Sotiri E, Treberg JR (2015) Mitochondrial reactive oxygen species production by fish muscle mitochondria: potential role in acute heat-induced oxidative stress. Comp Biochem Physiol B Biochem Mol Biol 191:99–107

    Article  PubMed  Google Scholar 

  51. Wood CM, Farrell AP, Brauner CJ (eds.) (2012) Homeostasis and toxicology on non-essential metals. Fish Physiology Vol. 31B, Elsevier, Amsterdam, pp.-1–507

  52. Lushchak VI (2015) Contaminant-induced oxidative stress in fish: a mechanistic approach. Fish Physiol Biochem. doi:10.1007/s10695-015-0171-5

    PubMed  Google Scholar 

  53. Di Giulio RT, Meyer JN (2008) Reactive oxygen species and oxidative stress. In: Di Giulio RT, Hinton DE (eds) The toxicology of fishes. CRC Press, Boca Raton, pp. 273–324

    Chapter  Google Scholar 

  54. Monteiro DA, Rantin FT, Kalinin AL (2010) Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxa, Brycon amazonicus (spix and Agassiz, 1829). Ecotoxicol 19:105–123

    Article  CAS  Google Scholar 

  55. Kawakami T, Hanao N, Nishiyama K, Kadota Y, Inoue M, Sato M, Suzuki S (2012) Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice. Toxicol Appl Pharmacol 258:32–42

    Article  CAS  PubMed  Google Scholar 

  56. Berntssen MH, Aatland A, Handy RD (2003) Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat Toxicol 65:55–72

    Article  CAS  PubMed  Google Scholar 

  57. Branco V, Canario J, Lu J, Holmgren A, Carvalho C (2012) Mercury and selenium interaction in vivo: effects on thioredoxin reductase and glutathione peroxidase. Free Rad Biol Med 52:781–793

    Article  CAS  PubMed  Google Scholar 

  58. Mozhdeganloo Z, Jafari AM, Koohi MK, Heidarpour M (2015) Methylmercury-induced oxidative stress in rainbow trout (Oncorhynchus mykiss) liver: ameliorating effect of vitamin C. Biol Trace Elem Res 165:103–109

    Article  CAS  PubMed  Google Scholar 

  59. Zhou GJ, Wang Z, Lau ETC, Xu XR, Leung KMY (2014) Can we predict temperature-dependent chemical toxicity to marine organisms and set appropriate water quality guidelines for protecting marine ecosystems under different thermal scenarios? Mar Poll Bull 87:11–21

    Article  CAS  Google Scholar 

  60. Vergauwen L, Knapen D, Hagenaars A, Blust R (2013a) Hypothermal and hyperthermal acclimation differentially modulate cadmium accumulation and toxicity in the zebrafish. Chemosphere 91:521–529

    Article  CAS  PubMed  Google Scholar 

  61. Kwok KW, Leung KM, Lui GS, Chu SV, Lam PK, Morritt D, Maltby L, Brock TC, Van den Brink PJ, Warne MS, Crane M (2007) Comparison of tropical and temperate freshwater animal species’ acute sensitivities to chemicals: implications for deriving safe extrapolation factors. Integr Environ Assess Manag 3:49–67

    Article  CAS  PubMed  Google Scholar 

  62. Dorts J, Bauwin A, Kestemont P, Jolly S, Sanchez W, Silvestre F (2012) Proteasome and antioxidant responses in Cottus gobio during a combined exposure to heat stress and cadmium. Comp Biochem Physiol C- Toxicol Pharmacol 155:318–332

    Article  CAS  PubMed  Google Scholar 

  63. Vergauwen L, Hagenaars A, Blust R, Knapen D (2013b) Temperature dependence of long-term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: evidence from transcript expression to physiology. Aquat Toxicol 126:52–62

    Article  CAS  PubMed  Google Scholar 

  64. Kimberly DA, Salice CJ (2013) Interactive effects of contaminants and climate-related stressors: high temperature increases sensitivity to cadmium. Environ Toxicol Chem 32:1337–1343

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors want to thank Eva Mykkeltvedt, Synnøve Winterthun, Betty Irgens, Anne Karin Syversen, Kjersti Ask, and Berit Solli (NIFES) for technical and analytical help. This project was co-funded by NIFES and the Norwegian Research Council (project 199683/S40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pål A. Olsvik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olsvik, P.A., Waagbø, R., Hevrøy, E.M. et al. In vitro Assessment of Hg Toxicity in Hepatocytes from Heat-Stressed Atlantic Salmon. Biol Trace Elem Res 174, 226–239 (2016). https://doi.org/10.1007/s12011-016-0670-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0670-y

Keywords

Navigation