Skip to main content
Log in

Comparative Analysis of the Trace Element Content of the Leaves and Roots of Three Plantago Species

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The primary objective of this study is to perform a comparative analysis of the trace element content of the leaves and roots of three Plantago species (P. maxima Juss. ex Jacq., P. major L., and P. lanceolata L.). Trace element levels were assessed by inductively coupled plasma mass spectrometry. The data indicate that the leaves of P. lanceolata are characterized by the highest Co, Cr, and Se content, whereas P. maxima leaves contained the greatest levels of Si and Zn. In contrast, the highest concentrations of Co, Cr, Fe, I, Mn, Si, and V were detected in the roots of P. major. Zn content was also higher in P. maxima roots than in the other species analyzed. The toxic trace elements were differentially distributed across the studied species. In particular, P. lanceolata leaves contained significantly higher Al, As, Li, Ni, Pb, and Sr levels, whereas the B and Cd content was elevated in P. major as compared to the other species. Surprisingly, the leaf Hg level was the lowest in P. major, whose levels of Al, As, B, Cd, Ni, Li, and Sr were significantly higher than the other two species. The data indicate that the concentration of most of the essential trace elements was higher in the leaves and roots of P. major and P. lanceolata than in P. maxima, while P. maxima had less toxic metals. The obtained data on trace elements content in Plantago tissues may be taken into account while using plant preparations in practical medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fraga CG (2005) Relevance, essentiality and toxicity of trace elements in human health. Mol Aspects Med 26:235–244

    Article  CAS  PubMed  Google Scholar 

  2. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2):65–87

    Article  CAS  PubMed  Google Scholar 

  3. Chen YW, Yang CY, Huang CF, Hung DZ, Leung YM, Liu SH (2009) Heavy metals, islet function and diabetes development. Islets 1(3):169–176

    Article  PubMed  Google Scholar 

  4. Agarwal S, Zaman T, Tuzcu EM, Kapadia SR (2011) Heavy metals and cardiovascular disease: results from the national health and nutrition examination survey (NHANES) 1999–2006. Angiology 62(5):422–429

    Article  PubMed  Google Scholar 

  5. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345(1–2):91–104

    Article  CAS  PubMed  Google Scholar 

  6. Ahmad I, Aqil F, Owais M (2006) Modern phytomedicine: turning medicinal plants into drugs. Wiley, Germany

    Book  Google Scholar 

  7. Beara IN, Lesjak MM, Jovin ED, Balog KJ, Anackov GT, Orcić DZ, Mimica-Dukić NM (2009) Plantain (Plantago L.) species as novel sources of flavonoid antioxidants. J Agric Food Chem 57(19):9268–73

    Article  CAS  PubMed  Google Scholar 

  8. Taskova R, Handjieva N, Evstatieva L, Popov S (1999) Iridoid glucosides from Plantago cornuti, Plantago major and Veronica cymbalaria. Phytochemistry 52:1443–1445

    Article  CAS  Google Scholar 

  9. Jamilah J, Sharifa AA, Sharifah NRSA (2012) GC-MS analysis of various extracts from leaf of Plantago major used as traditional medicine. World Appl Sci J 17:67–70

    CAS  Google Scholar 

  10. Zhou Q, Lu W, Niu Y, Liu J, Zhang X, Gao B, Akoh CC, Shi H, Yu L (2013) Identification and quantification of phytochemical composition and anti-inflammatory, cellular antioxidant, and radical scavenging activities of 12 Plantago species. J Agric Food Chem 61(27):6693–6702

    Article  CAS  PubMed  Google Scholar 

  11. Beara IN, Orčić DZ, Lesjak MM, Mimica-Dukić NM, Peković BA, Popović MR (2010) Liquid chromatography/tandem mass spectrometry study of anti-inflammatory activity of Plantain (Plantago L.) species. J Pharmaceut Biomed 52(5):01–706

    Article  Google Scholar 

  12. Tinkov AA, Nemereshina ON, Popova EV, Polyakova VS, Gritsenko VA, Nikonorov AA (2014) Plantago maxima leaves extract inhibits adipogenic action of a high-fat diet in female Wistar rats. Eur J Nutr 53:831–842

    Article  CAS  PubMed  Google Scholar 

  13. Beara IN, Lesjak MM, Četojević-Simin DD, Orčić DZ, Janković T, Anačkov GT, Mimica-Dukić NM (2012) Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of endemic Plantago reniformis G. Beck. Food Res Int 49:501–507

    Article  CAS  Google Scholar 

  14. Beara IN, Lesjak MM, Orčić DZ, Simin NĐ, Četojević-Simin DD, Božin BN, Mimica-Dukić NM (2012) Comparative analysis of phenolic profile, antioxidant, anti-inflammatory and cytotoxic activity of two closely-related Plantain species: Plantago altissima L. and Plantago lanceolata L. LWT-Food Sci Technol 47:64–70

    Article  CAS  Google Scholar 

  15. Palmeiro NS, Almeida CE, Ghedini PC, Goulart LS, Baldisserotto B (2002) Analgesic and anti-inflammatory properties of Plantago australis hydroalcoholic extract. Acta Farm Bonaer 21:89–92

    Google Scholar 

  16. Barua CC, Pal SK, Roy JD, Buragohain B, Talukdar A, Barua AG, Borah P (2011) Studies on the anti-inflammatory properties of Plantago erosa leaf extract in rodents. J Ethnopharmacol 134:62–66

    Article  CAS  PubMed  Google Scholar 

  17. Yoon JY, Sim JY, Kim SS, Jong C (2003) Anti-inflammatory and analgesic activity of fractions of Plantago asiatica herb. Chung-Ang J Pharmacal Sci 17:129–147

    Google Scholar 

  18. Beara I, Lesjak M, Jovin E, Balog K, Orčić D, Simin N, Mimica-Dukić N (2009) Plantago holosteum Scop. as a potential natural antioxidant and antiinflammatory agent. Planta Med 75:44

    Article  Google Scholar 

  19. Rodríguez-Cabezas ME, Galvez J, Camuesco D, Lorente MD, Concha A, Martinez-Augustin O, Redondo L, Zarzuelo A (2003) Intestinal anti-inflammatory activity of dietary fiber (Plantago ovata seeds) in HLA-B27 transgenic rats. Clin Nutr 22:463–471

    Article  PubMed  Google Scholar 

  20. Samuelsen AB (2007) The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J Ethnopharmacol 71(1):1–21

    Google Scholar 

  21. Bosse GG (1942) Wild plants for needs of defense. Sci Life 1:34–38 [In Russian]

    Google Scholar 

  22. Filipović-Trajković R, Ilić ZS, Šunić L, Andjelković S (2012) The potential of different plant species for heavy metals accumulation and distribution. J Food Agric Environ 10(1):959–964

    Google Scholar 

  23. Prasad AS (2008) Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Geront 43(5):370–377

    Article  CAS  Google Scholar 

  24. Duntas LH (2009) Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res 41:443–447

    Article  CAS  PubMed  Google Scholar 

  25. Petrova S, Velcheva I, Yurukova I, Berova M (2014) Plantago lanceolata L. as a biomonitor of trace elements in an urban area. Bulg J Agric Sci 20:325–26

    Google Scholar 

  26. Haddadian K, Haddadian K, Zahmatkash M (2013) A review of Plantago plant. Indian J Tradit Know 13(4):681–5

    Google Scholar 

  27. Bhanisana Devi RK, Sarma HNK (2013) Profile of trace elements in selected medicinal plants of North East India. IOSR-JAP 4(3):47–51

    Article  Google Scholar 

  28. Kurteva MK (2009) Comparative study on Plantago major and P. lanceolata (Plantaginaceae) as bioindicators of the pollution in the region of the Asarel Copper Dressing Works. Phytol Balcan 15(2):261–71

    Google Scholar 

  29. Rábai M, Nagy NV, May Z, Szentmihályi K (2012) Microelements in drug and extracts of Plantago lanceolata L. ECB 1(7):280–283

    Google Scholar 

  30. Nagórska-Socha A, Ptasinski B, Kita A (2013) Heavy metal bioaccumulation and antioxidative responses in Cardaminopsis arenosa and Plantago lanceolata leaves from metalliferous and non-metalliferous sites: a field study. Ecotoxicology 22:1422–34

    Article  Google Scholar 

  31. Mazur Z, Radziemska M, Fronczyk J, Jeznach J (2015) Heavy metal accumulation in bioindicators of pollution in urban areas of northeastern Poland. FEB 24(1):216–23

    Google Scholar 

  32. Kulhari A, Sheorayan A, Bajar S, Sarkar S, Chaudhury A, Kalia RK (2013) Investigation of heavy metals in frequently utilized medicinal plants collected from environmentally diverse locations of north western India. SpringerPlus 2:676

    Article  PubMed  PubMed Central  Google Scholar 

  33. Maobe MAG, Gatebe E, Gitu L, Rotich H (2012) Profile of heavy metals in selected medicinal plants used for the treatment of diabetes, malaria and pneumonia in Kisii Region, Southwest Kenya. GJP 6(3):245–51

    Google Scholar 

  34. Tokalioglu S (2012) Determination of trace elements in commonly consumed medicinal herbs by ICP-MS and multivariate analysis. Food Chem 134(4):2504–8

    Article  PubMed  Google Scholar 

  35. Raczuk J, Biardzka E, Daruk J (2008) The content of Ca, Mg, Fe and Cu in selected species of herbs and herb infusions. PZH 59(1):33–40

    CAS  Google Scholar 

  36. Suliburska J, Kaczmarek K (2012) Herbal infusions as a source of calcium, magnesium, iron, zinc and copper in human nutrition. Int J Food Sci Nutr 63(2):194–8

    Article  CAS  PubMed  Google Scholar 

  37. Patel P, Patel NM, Patel PM (2011) WHO guidelines on quality control of herbal medicines. IJRAP 2(4):1148–54

    Google Scholar 

  38. Siedlecka A (1995) Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Soc Bot Pol 64:265–272

    Article  CAS  Google Scholar 

  39. Chang X, Duan C, Wang H (2000) Root excretion and plant resistance to metal toxicity. Ying Yong Sheng Tai Xue Bao 11:315–20 [In Chinese]

    CAS  PubMed  Google Scholar 

  40. Weston LA (2003) Root exudates: an overview. In: De Kroon H, Wisser EJW (eds) Root ecology. Springer, Berlin Heidelberg, pp 235–255

    Google Scholar 

  41. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  42. Scalbert A, Mila I, Expert D, Marmolle F, Albrecht AM, Hurrell R, Huneau JF, Tomé D (1999) Polyphenols, metal ion complexation and biological consequences. In: Gross GG, Hemingway RW, Yoshida T, Branham SJ (eds) Plant Polyphenols 2. Springer, New York, pp 545–554

    Chapter  Google Scholar 

  43. Nemereshina ON, Tinkov AA, Gritsenko VA, Nikonorov AA (2014) Influence of Plantaginaceae species on E. coli K12 growth in vitro: possible relation to phytochemical properties. Pharm Biol 53(5):715–724

    Article  PubMed  Google Scholar 

  44. Asemi Z, Jamilian M, Mesdaghinia E, Esmaillzadeh A (2015) Effects of selenium supplementation on glucose homeostasis, inflammation, and oxidative stress in gestational diabetes: randomized, double-blind, placebo-controlled trial. Nutrition 31(10):1235–42

    Article  CAS  PubMed  Google Scholar 

  45. Cruz KJ, de Oliveira AR, do Marreiro DN (2015) Antioxidant role of zinc in diabetes mellitus. World J Diabetes 6(2):333–7

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kaur B, Henry J (2014) Micronutrient status in type 2 diabetes: a review. Adv Food Nutr Res 71:55–100

    Article  CAS  PubMed  Google Scholar 

  47. Goldwaser I, Gefel D, Gershonov E, Fridkin M, Shechter Y (2000) Insulin-like effects of vanadium: basic and clinical implications. J Inorg Biochem 80(1–2):21–5

    Article  CAS  PubMed  Google Scholar 

  48. Yilmaz-Ozden T, Kurt-Sirin O, Tunali S, Akev N, Can A, Yanardag R (2014) Effect of oral vanadium supplementation on oxidative stress factors in the lung tissue of diabetic rats. Trace Elem Electroly 31:48–52

    Article  CAS  Google Scholar 

  49. Zhang S, Chen X, Yang W, Liu J, Liu Y (2010) Analysis on the content of trace elements essential to human in Alisma plantago-aquatica from different regions in Sichuan province. Chin J Pharm Anal 30(7):1213–7

    CAS  Google Scholar 

  50. Oto G, Ekin S, Ozdemir H, Levent A, Berber I (2012) The effect of Plantago major Linnaeus on serum total sialic acid, lipid-bound sialic acid, some trace elements and minerals after administration of 7,12-dimethylbenz(a)anthracene in rats. Toxicol Ind Health 28(4):334–42

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Tinkov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tinkov, A.A., Nemereshina, O.N., Suliburska, J. et al. Comparative Analysis of the Trace Element Content of the Leaves and Roots of Three Plantago Species. Biol Trace Elem Res 173, 225–230 (2016). https://doi.org/10.1007/s12011-016-0626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0626-2

Keywords

Navigation