Skip to main content
Log in

Effects of Dietary Copper-Methionine on Matrix Metalloproteinase-2 in the Lungs of Cold-Stressed Broilers as an Animal Model for Pulmonary Hypertension

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of the present study was to investigate the effects of different levels of copper (as supplemental copper-methionine) on ascites incidence and matrix metalloproteinase-2 (MMP-2) changes in the lungs of cold-stressed broilers. For this purpose, 480 1-day-old Ross 308 broiler chickens were randomly assigned to six treatments. Treatments consisted of two ambient temperatures (thermoneutral and cold stress) each combined with 0, 100, and 200 mg supplemental copper/kg as copper-methionine in a 2 × 3 factorial arrangement in a completely randomized design with four replicates. Ascites was diagnosed based on abdominal and pericardial fluid accumulation at 45 days of age. Fourty-eight broilers were killed at 38 and 45 days of age, and their lungs were collected for biological analysis. Results showed that MMP-2 increased in the lungs of ascitic broilers and that copper-methionine supplementation significantly reduced MMP-2 in cold-stressed broiler chickens. Treatments did not affect tissue inhibitor of metalloproteinase-2 (TIMP-2) at 38 and 45 days of age, and no difference was observed between 100 and 200 mg/kg copper-methionine treatments. In conclusion, copper-methionine at higher than conventional levels of supplementation decreased ascites incidence in low temperature through reduced MMP-2 concentration. Further research is warranted to investigate the effect of copper on MMP-2 concentrations in other tissues with high oxygen demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Coussens ML, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations: review. Sci 295:2387–2392. doi:10.1126/science.1067100

    Article  CAS  Google Scholar 

  2. Linask KK, Han M, Cai DH, Brauer PR, Maisastry SM (2005) Cardiac morphogenesis: matrix metalloproteinase coordination of cellular mechanisms underlying heart tube formation and directionality of looping. Dev Dynam 233:739–753. doi:10.1002/dvdy.20377

    Article  CAS  Google Scholar 

  3. Goldberg GI, Marmer BL, Grant GA, Eisen AZ, Wilhelm S, He CS (1989) Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. P Natl Acad Sci USA 86:8207–8211. doi:10.1073/pnas.86.21.8207

    Article  CAS  Google Scholar 

  4. Goldberg GI, Strongin A, Collier IE, Genrich LT, Marmer BL (1992) Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J Biol Chem 267:4583–4591

    CAS  PubMed  Google Scholar 

  5. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18:1135–1149

    CAS  PubMed  Google Scholar 

  6. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase: isolation of the activated form of the membrane metalloprotease. J Biol Chem 270:5331–5338. doi:10.1074/jbc.270.10.5331

    Article  CAS  PubMed  Google Scholar 

  7. Kenny HA, Lengyel E (2009) MMP-2 functions as an early response protein in ovarian cancer metastasis. Cell 8:683–688

    CAS  Google Scholar 

  8. Barst RJ (2005) PDGF signaling in pulmonary arterial hypertension. J Clin Invest 115:2691–2694. doi:10.1172/JCI26593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eddahibi S, Morrell N, Ortho MP, Naeije R, Adnot S (2002) Pathobiology of pulmonary arterial hypertension. Eur Respir J 20:1559–1572. doi:10.1183/09031936.02.00081302

    Article  CAS  PubMed  Google Scholar 

  10. Humbert M, Morrell N, Archer S, Stenmark K, Christman B, Weir E, Eickelberg O, Voelkel N, Rabinovitch M (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Car Doil 43:13–24. doi:10.1016/j.jacc.2004.02.029

    Article  Google Scholar 

  11. Ivy DD, McMurtry IF, Colvin K, Imamura M, Oka M, Lee DS, Gebb S, Jones PL (2005) Development of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor–deficient rats. A new model of severe pulmonary arterial hypertension. Circulation 111:2988–2996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lepetit H, Eddahibi S, Fadel E, Frisdal E, Munaut C, Noel A, Humbert M, Adnot S, Ortho MP, Lafuma C (2005) Smooth muscle cell matrix metalloproteinases in iDoipathic pulmonary arterial hypertension. Eur Respir J 25:834–842. doi:10.1183/09031936.05.00072504

    Article  CAS  PubMed  Google Scholar 

  13. Wang J, Qiao J, Zhao L, Li K, Wang H, Xu T, Tian Y, Gao M, Wang X (2007) Proliferation of pulmonary artery smooth muscle cells in the development of ascites syndrome in broilers induced by low ambient temperature. J Vet Med 54:564–570. doi:10.1111/j.1439-0442.2007.00988.x

    Article  CAS  Google Scholar 

  14. Tabima DM, Frizzell S, Gladwin MT (2012) Reactive oxygen and nitrogen species in pulmonary hypertension. Free Radic Bio Med 52:1–39. doi:10.1016/j.freeradbiomed.2012.02.041

    Article  Google Scholar 

  15. Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, Schieffer B (2003) Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase–derived reactive oxygen species. Circ Res 92:80–86. doi:10.1161/01.res.0000077044.60138.7c

    Article  Google Scholar 

  16. Kawaguchi Y, Tanaka H, Okada T, Konishi H, Takahashi M, Ito M, Asai J (1996) The effects of ultraviolet a and reactive oxygen species on the mRNA expression of 72-kDa type IV collagenase and its tissue inhibitor in cultured human dermal fibroblasts. Arch Dermatol Res 288:39–44. doi:10.1007/BF02505041

    Article  CAS  PubMed  Google Scholar 

  17. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Canc 2:161–174. doi:10.1038/nrc745

    Article  CAS  Google Scholar 

  18. Lee KW, Lee HJ (2006) Biphasic effects of dietary antioxidants on oxidative stress-mediated carcinogenesis: review. Mech Ageing Dev 127:424–431. doi:10.1016/j.mad.2006.01.021

    Article  CAS  PubMed  Google Scholar 

  19. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicol 189:147–163. doi:10.1016/S0300-483X(03)00159-8

    Article  CAS  Google Scholar 

  20. Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress, and human health: review. Mol Asp Med 26:268–298. doi:10.1016/j.mam.2005.07.015

    Article  CAS  Google Scholar 

  21. Culotta VC, Klomp LWJ, Strain J, Casareno RLB, Krems B, Gitlin JD (1997) The copper chaperone for superoxide dismutase. J Biol Chem 272:23469–23472. doi:10.1074/jbc.272.38.23469

    Article  CAS  PubMed  Google Scholar 

  22. Tapiero H, Townsend DM, Tew KD (2003) Trace elements in human physiology and pathology. Copper. Biomed Pharmacother 57:386–398. doi:10.1016/S0753-3322(03)00012-X

    Article  CAS  PubMed  Google Scholar 

  23. Simeon A, Wegrowski Y, Bontemps Y, Maquart FX (2000) Expression of glycosaminoglycans and small proteoglycans in wounds: modulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+. J Invest Dermatol 115:962–968. doi:10.1046/j.1523-1747.2000.00166.x

    Article  CAS  PubMed  Google Scholar 

  24. Simeon A, Monier F, Emonard H, Gillery P, Birembaut P, Hornebeck W, Maquart FX (1999) Expression and activation of matrix metalloproteinases in wounds: modulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+. J Invest Dermatol 112:957–964. doi:10.1046/j.1523-1747.1999.00606.x

    Article  CAS  PubMed  Google Scholar 

  25. Simeon A, Emonard H, Hornebeck W, Maquart FX (2000) The tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+ stimulates matrix metalloproteinase-2 expression by fibroblast cultures. Life Sci 67:2257–2265. doi:10.1016/S0024-3205(00)00803-1

    Article  CAS  PubMed  Google Scholar 

  26. Canapp SO, Farese JP, Schultz GS, Gowda S, Ishak AM, Swaim SF, Vangilder J, L L-A, FG M (2003) The effect of topical tripeptide-copper complex on healing of ischemic open wounds. Vet Surg 32:515–523. doi:10.1053/jvet.2003.50070

    Article  PubMed  Google Scholar 

  27. Maquart FX, Pickart L, Laurent M, Gillery P, Monboisse J, J Bore1 (1988) Stimulation of collagen synthesis in fibroblast cultures by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+. Fed Eur Biochem Soc 238:343–346

    Article  CAS  Google Scholar 

  28. Maquart FX, Bellon G, Chaqour B, Wegrowski J, Patt LM, Trachy RE, Monboisse JC, Chastang F, Birembaut P, Gillery P, Borel JP (1993) In vivo stimulation of connective tissue accumulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+ in rat experimental wounds. J Clin Invest 92:2368–2376. doi:10.1172/JCI116842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cangul IT, Gul NY, Topal A, Yilmaz R (2006) Evaluation of the effects of topical tripeptide-copper complex and zinc oxide on open-wound healing in rabbits. J Complicat Eur Soc Vet Dermatol 17:417–423. doi:10.1111/j.1365-3164.2006.00551.x

    Article  Google Scholar 

  30. Das TK, Mondal MK, Biswas P, Bairagi B, Samanta CC (2010) Influence of level of dietary inorganic and organic copper and energy level on the performance and nutrient utilization of broiler chickens. Asian Aust J Anim Sci 23:82–89. doi:10.5713/ajas.2010.60150

    Article  CAS  Google Scholar 

  31. Lim HS, Paik IK, Sohn TI, Kim WY (2006) Effects of supplementary copper chelates in the form of methionine, chitosan and yeast on the performance of broilers. Asian-Austral J Anim 19:1322–1327

    Article  CAS  Google Scholar 

  32. Bao YM, Choct M, Iji PA, Bruerton K (2007) Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. J Appl Poult Res 16:448–455. doi:10.1093/japr/16.3.448

    Article  CAS  Google Scholar 

  33. Gao S, Yin T, Xu B, Ma Y, Hu M (2014) Amino acid facilitates absorption of copper in the caco-2 cell culture model. Life Sci 109:50–56. doi:10.1016/j.lfs.2014.05.021

    Article  CAS  PubMed  Google Scholar 

  34. Shao XP, Liu WB, Xu WN, Lu KL, Xia W, Jiang YY (2010) Effects of dietary copper sources and levels on performance, copper status, plasma antioxidant activities and relative copper bioavailability in Carassius auratus gibelio. Aquacult 308:60–65. doi:10.1016/j.aquaculture.2010.07.021

    Article  CAS  Google Scholar 

  35. Han B, Yoon SS, Han HR, Qu WJ, Nigussie F (2005) Effect of low ambient temperature on the concentration of free radicals related to ascites in broiler chickens. Asian Aust J Anim Sci 18:1182–1187

    Article  Google Scholar 

  36. Wang Y, Guo Y, Ning D, Peng Y, Cai H, Tan J, Yang Y, Liu D (2012) Changes of hepatic biochemical parameters and proteomics in broilers with cold-induced ascites. J Anim Sci Biotechnol 3:41–50. doi:10.1186/2049-1891-3-41

    Article  PubMed  PubMed Central  Google Scholar 

  37. Barnes PJ (1990) Reactive oxygen species and airway inflammation. Free Radic Biol Med 9:235–243. doi:10.1016/0891-5849(90)90034-G

    Article  CAS  PubMed  Google Scholar 

  38. Pustovrh MC, Jawerbaum A, Capobianco E, White V, Martinez N, Lopez-costa JJ, Gonzalez E (2005) Oxidative stress promotes the increase of matrix metalloproteinases-2 and −9 activities in the feto-placental unit of diabetic rats. Free Radic Res 39:1285–1293. doi:10.1080/10715760500188796

    Article  CAS  PubMed  Google Scholar 

  39. Frisdal E, Gest V, Vieillard-Baron A, Levame M, Lepetit H, Eddahibi S, Lafuma C, Harf A, Adnot S, Ortho MP (2001) Gelatinase expression in pulmonary arteries during experimental pulmonary hypertension. Eur Respir J 18:838–845. doi:10.1183/09031936.01.00084601

    Article  CAS  PubMed  Google Scholar 

  40. Siwik D, Pagano P, Colucci W (2001) Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol-Cell Ph 280:53–60

    Google Scholar 

  41. Ozyigit MO, Kahraman MM, Sonmez G (2005) The identification of matrix metalloproteinases and their tissue inhibitors in broiler chickens by immunohistochemistry. Avian Pathol 34:509–516. doi:10.1080/03079450500368508

    Article  CAS  PubMed  Google Scholar 

  42. Gasche Y, Copin JC, Sugawara T, Fujimura M, Chan PH (2001) Matrix metalloproteinase inhibition prevents oxidative stress-associated blood–brain barrier disruption after transient focal cerebral ischemia. J Cerebr Blood F Met 21:1393–1400. doi:10.1097/00004647-200112000-00003

    Article  CAS  Google Scholar 

  43. Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, Sydykov A, Lai YJ, Weissmann N, Seeger W, Grimminger F (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115:2811–2821. doi:10.1172/JCI24838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tan X, Chai J, Bi SC, Li JJ, Li WW, Zhou JY (2012) Involvement of matrix metalloproteinase-2 in medial hypertrophy of pulmonary arterioles in broiler chickens with pulmonary arterial hypertension. Vet J 93:420–425. doi:10.1016/j.tvjl.2012.01.017

    Article  Google Scholar 

  45. Morita-Fujimura Y, Fujimura M, Gasche Y, Copin JC, Chan PH (2000) Over expression of copper and zinc superoxide dismutase in transgenic mice prevents the induction and activation of matrix metalloproteinases after cold injury-induced brain trauma. J Cereb Blood Flow Metab 20:130–138. doi:10.1097/00004647-200001000-00017

    Article  CAS  PubMed  Google Scholar 

  46. NRC (1994) Nutrient requirements of poultry, 9th edn. National research council, Washington

    Google Scholar 

Download references

Acknowledgments

We are grateful to François-Xavier Maquart (University of Reims Champagne-Ardenne, Research Unit “Extracellular Matrix and Cell Dynamic”) for providing the equipment and material as well as valuable suggestions for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Bagheri Varzaneh.

Additional information

All other authors have read the manuscript and have agreed to submit it in its current form for consideration for publication in the Journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri Varzaneh, M., Rahmani, H., Jahanian, R. et al. Effects of Dietary Copper-Methionine on Matrix Metalloproteinase-2 in the Lungs of Cold-Stressed Broilers as an Animal Model for Pulmonary Hypertension. Biol Trace Elem Res 172, 504–510 (2016). https://doi.org/10.1007/s12011-015-0612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0612-0

Keywords

Navigation