Biological Trace Element Research

, Volume 172, Issue 1, pp 93–100 | Cite as

Serum Trace Element Profiles, Prolactin, and Cortisol in Transient Ischemic Attack Patients

  • Lydmila L. Klimenko
  • Anatoly V. Skalny
  • Aliya A. Turna
  • Alexey A. TinkovEmail author
  • Maria N. Budanova
  • Ivan S. Baskakov
  • Marina S. Savostina
  • Aksana N. Mazilina
  • Anatoly I. Deev
  • Alexandr A. Nikonorov


The primary aim of the present study was to assess the association between trace element status, brain damage biomarkers, cortisol, and prolactin levels in transient ischemic attack (TIA) patients. Ten male and 10 female TIA patients were involved in this study. Age, gender, and BMI-matched volunteers served as the respective control group. Serum samples were examined for complement components C4 and C3a, vascular endothelial growth factor (VEGF), S100B, NR2 antibodies (NR2Ab), total antioxidant status (TAS), cortisol, and prolactin. Trace element concentration in serum samples was assessed using inductively coupled plasma mass spectrometry at NexION 300D. The obtained data indicate that both male and female TIA patients were characterized by the increased C4 and prolactin concentrations. At the same time, serum VEGF levels were elevated in only men, whereas TAS values were decreased in women with TIA. Serum cortisol concentrations were significantly increased only in female TIA patients. Men and women with TIA were characterized by a 32 and 44 % decrease in serum Fe content. A two- and threefold increase in serum V content was observed in TIA females and males, respectively. Women with TIA had 60 % higher values of serum B, whereas male patients were characterized by a sevonfold increase in boron content in comparison to the control values. TIA also resulted in decreased serum Cu content in women and elevation of I, Li, Mn, Se, Zn, As, Pb, Ni, and Sr levels in men. Correlation analysis revealed a significant association between trace elements concentration and the studied parameters.


Transient ischemic attack Vanadium Iron Boron Stroke risk biomarkers 


Compliance with Ethical Standards

The investigation was performed in accordance with the principles of the Declaration of Helsinki for studies involving humans. The protocol of the study was approved by the local ethics committee.

Conflict of Interest

The authors declare that they have no competing interests.


  1. 1.
    Reddy D, Hart RG (2014) Stroke epidemiology, etiology, and background. In: Schweizer TA, Macdonald RL (eds) The behavioral consequences of stroke. Springer, New York, pp. 1–14CrossRefGoogle Scholar
  2. 2.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després J-P, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler 3rd ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2015) Heart disease and stroke statistics-2015 update: a report from the American heart association. Circulation 131(4):e29CrossRefPubMedGoogle Scholar
  3. 3.
    Beal CC (2010) Gender and stroke symptoms: a review of the current literature. J Neurosci Nurs 42(2):80–87CrossRefPubMedGoogle Scholar
  4. 4.
    Wyller TB, Sødring KM, Sveen U, Ljunggren AE, Bautz-Holter E (1997) Are there gender differences in functional outcome after stroke? Clin Rehabil 11(2):171–179CrossRefPubMedGoogle Scholar
  5. 5.
    Reeves MJ, Bushnell CD, Howard G, Gargano JW, Duncan PW, Lynch G, Lisabeth L, et al. (2008) Sex differences in stroke: epidemiology, clinical presentation, medical care, and outcomes. Lancet Neurol 7(10):915–926CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Franceschini R, Tenconi GL, Zoppoli F, Barreca T (2001) Endocrine abnormalities and outcome of ischaemic stroke. Biomed Pharmacother 55(8):458–465CrossRefPubMedGoogle Scholar
  7. 7.
    Barugh AJ, Gray P, Shenkin SD, MacLullich AMJ, Mead GE (2014) Cortisol levels and the severity and outcomes of acute stroke: a systematic review. J Neurol 261(3):533–545CrossRefPubMedGoogle Scholar
  8. 8.
    Theodoropoulou A, Metallinos IC, Elloul J, Taleli P, Lekka N, Vagenakis AG, Kyriazopoulou V (2006) Prolactin, cortisol secretion and thyroid function in patients with stroke of mild severity. Horm Metab Res 38(9):587–591CrossRefPubMedGoogle Scholar
  9. 9.
    Gönüllü H, Karadaş S, Milanlioğlu A, Gönüllü E, Katı C, Demir H (2013) Levels of serum trace elements in ischemic stroke patients. J Exp Clin Med 30(4):301–304CrossRefGoogle Scholar
  10. 10.
    Li YV, Zhang JH (2012) Metal ions in stroke pathophysiology. In: Li YV, Zhang JH (eds) Metal ion in stroke. Springer, New York, pp. 1–12CrossRefGoogle Scholar
  11. 11.
    Savaskan NE, Hore N, Eyupoglu IY (2012) Selenium and selenoproteins in neuroprotection and neuronal cell death. In: Li YV, Zhang JH (eds) Metal ion in stroke. Springer, New York, pp. 525–536CrossRefGoogle Scholar
  12. 12.
    Mitra J, Vasquez V, Hegde PM, Boldogh I, Mitra S, Kent TA, Rao KS, Hegde ML (2014) Revisiting metal toxicity in neurodegenerative diseases and stroke: therapeutic potential. Neurol Res Ther 1(2):107PubMedPubMedCentralGoogle Scholar
  13. 13.
    Prohaska JR (1987) Functions of trace elements in brain metabolism. Physiol Rev 67(3):858–901PubMedGoogle Scholar
  14. 14.
    Neve J (1992) Clinical implications of trace elements in endocrinology. Biol Trace Elem Res 32(1–3):173–185CrossRefPubMedGoogle Scholar
  15. 15.
    Albers GW, Caplan LR, Easton JD, Fayad PB, Mohr JP, Saver JL, Sherman DG (2002) Transient ischemic attack—proposal for a new definition. N Engl J Med 347(21):1713–1716CrossRefPubMedGoogle Scholar
  16. 16.
    Wu CM, McLaughlin K, Lorenzetti DL, Hill MD, Manns BJ, Ghali WA (2007) Early risk of stroke after transient ischemic attack: a systematic review and meta-analysis. Arch Intern Med 167(22):2417–2422CrossRefPubMedGoogle Scholar
  17. 17.
    Choi MK, Lee SH, Kim SK (2014) Relationship between adiposity-related biomarkers and calcium, magnesium, iron, copper, and zinc in young adult men with different degrees of obesity. Trace Elem Electroly 31(4):148–155CrossRefGoogle Scholar
  18. 18.
    Steiner J, Schiltz K, Walter M, Wunderlich MT, Keilhoff G, Brisch R, Westphal S, et al. (2010) S100B serum levels are closely correlated with body mass index: an important caveat in neuropsychiatric research. Psychoneuroendocrinology 35(2):321–324CrossRefPubMedGoogle Scholar
  19. 19.
    Cavusoglu E, Eng C, Chopra V, Ruwende C, Yanamadala S, Clark LT, Marmur JD (2007) Usefulness of the serum complement component C4 as a predictor of stroke in patients with known or suspected coronary artery disease referred for coronary angiography. Am J Cardiol 100(2):164–168CrossRefPubMedGoogle Scholar
  20. 20.
    Stokowska A, Olsson S, Holmegaard L, Jood K, Blomstrand C, Jern C, Pekna M (2011) Plasma C3 and C3a levels in cryptogenic and large-vessel disease stroke: associations with outcome. Cerebrovasc Dis 32(2):114–122CrossRefPubMedGoogle Scholar
  21. 21.
    Matsuo R, Ago T, Kamouchi M, Kuroda J, Kuwashiro T, Hata J, Kitazono T (2013) Clinical significance of plasma VEGF value in ischemic stroke-research for biomarkers in ischemic stroke (REBIOS) study. BMC Neurol 13(1):32CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Saenger AK, Christenson RH (2010) Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment. Clin Chem 56(1):21–33CrossRefPubMedGoogle Scholar
  23. 23.
    Weissman JD, Khunteev GA, Heath R, Dambinova SA (2011) NR2 antibodies: risk assessment of transient ischemic attack (TIA)/stroke in patients with history of isolated and multiple cerebrovascular events. J Neurol Sci 300(1):97–102CrossRefPubMedGoogle Scholar
  24. 24.
    Cherubini A, Ruggiero C, Polidori MC, Mecocci P (2005) Potential markers of oxidative stress in stroke. Free Radical Bio Med 39(7):841–852CrossRefGoogle Scholar
  25. 25.
    Engström G, Hedblad B, Janzon L, Lindgärde F (2007) Complement C3 and C4 in plasma and incidence of myocardial infarction and stroke: a population-based cohort study. Eur J Cardiov Prev R 4(3):392–397CrossRefGoogle Scholar
  26. 26.
    Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66(3):232–245CrossRefPubMedGoogle Scholar
  27. 27.
    Gariballa SE, Hutchin TP, Sinclair AJ (2002) Antioxidant capacity after acute ischaemic stroke. QJM 95(10):685–690CrossRefPubMedGoogle Scholar
  28. 28.
    Allen CL, Bayraktutan U (2009) Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke 4(6):461–470CrossRefPubMedGoogle Scholar
  29. 29.
    Ma Y, Zechariah A, Qu Y, Hermann DM (2012) Effects of vascular endothelial growth factor in ischemic stroke. J Neurosci Res 90(10):1873–1882CrossRefPubMedGoogle Scholar
  30. 30.
    Dassan P, Brown MM, Gregoire SM, Keir G, Werring DJ (2012) Association of cerebral microbleeds in acute ischemic stroke with high serum levels of vascular endothelial growth factor. Arch Neurol-Chicago 69(9):1186–1189CrossRefPubMedGoogle Scholar
  31. 31.
    Böttiger BW, Möbes S, Glätzer R, Bauer H, Gries A, Bärtsch P, Martin E, et al. (2001) Astroglial protein S-100 is an early and sensitive marker of hypoxic brain damage and outcome after cardiac arrest in humans. Circulation 103(22):2694–2698CrossRefPubMedGoogle Scholar
  32. 32.
    Nash DL, Bellolio MF, Stead LG (2008) S100 as a marker of acute brain ischemia: a systematic review. Neurocrit Care 8(2):301–307CrossRefPubMedGoogle Scholar
  33. 33.
    Persson L, Hårdemark HG, Gustafsson J, Rundström G, Mendel-Hartvig IB, Esscher T, Påhlman S (1987) S-100 protein and neuron-specific enolase in cerebrospinal fluid and serum: markers of cell damage in human central nervous system. Stroke 18(5):911–918CrossRefPubMedGoogle Scholar
  34. 34.
    Christensen H, Boysen G, Johannesen HH (2004) Serum-cortisol reflects severity and mortality in acute stroke. J Neurol Sci 217(2):175–180CrossRefPubMedGoogle Scholar
  35. 35.
    Johansson Å, Olsson T, Carlberg B, Karlsson K, Fagerlund M (1997) Hypercortisolism after stroke—partly cytokine-mediated? J Neurol Sci 147(1):43–47CrossRefPubMedGoogle Scholar
  36. 36.
    Clark NA, Teschke K, Rideout K, Copes R (2007) Trace element levels in adults from the West Coast of Canada and associations with age, gender, diet, activities, and levels of other trace elements. Chemosphere 70(1):155–164CrossRefPubMedGoogle Scholar
  37. 37.
    Hasbahceci M, Cipe G, Kadioglu H, Aysan E, Muslumanoglu M (2013) Reverse relationship between blood boron level and body mass index in humans: does it matter for obesity? Biol Trace Elem Res 153(1–3):141–144CrossRefPubMedGoogle Scholar
  38. 38.
    Selim MH, Ratan RR (2004) The role of iron neurotoxicity in ischemic stroke. Ageing Res Rev 3(3):345–353CrossRefPubMedGoogle Scholar
  39. 39.
    Jomova K, Baros S, Valko M (2012) Redox active metal-induced oxidative stress in biological systems. Transit Metal Chem 37(2):127–134CrossRefGoogle Scholar
  40. 40.
    Li YV, Zhang JH (2012) Iron neurotoxicity in ischemic and hemorrhagic stroke. In: Li YV, Zhang JH (eds) Metal ion in stroke. Springer, New York, pp. 241–253CrossRefGoogle Scholar
  41. 41.
    Milionis HJ, Liberopoulos E, Goudevenos J, Bairaktari ET, Seferiadis K, Elisaf MS (2005) Risk factors for first-ever acute ischemic non-embolic stroke in elderly individuals. Int J Cardiol 99(2):269–275CrossRefPubMedGoogle Scholar
  42. 42.
    Marniemi J, Alanen E, Impivaara O, Seppänen R, Hakala P, Rajala T, Rönnemaa T (2005) Dietary and serum vitamins and minerals as predictors of myocardial infarction and stroke in elderly subjects. Nutr Metab Cardiovasc Dis 15(3):188–197CrossRefPubMedGoogle Scholar
  43. 43.
    Yiping T, Yuping W, Jianying C, Zhifeng R (1997) Study on the content of vanadium, molybdenum, barium, aluminium, strontium in serum of sufferers from apoplectic stroke. Trace Elements Science 2:003Google Scholar
  44. 44.
    Kodali P, Chitta KR, Landero Figueroa JA, Caruso JA, Adeoye O (2012) Detection of metals and metalloproteins in the plasma of stroke patients by mass spectrometry methods. Metallomics 4(10):1077–1087CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Li J, Tong Q, Shi X, Costa M, Huang C (2005) ERKs activation and calcium signaling are both required for VEGF induction by vanadium in mouse epidermal Cl41 cells. Mol Cell Biochem 279(1–2):25–33CrossRefPubMedGoogle Scholar
  46. 46.
    Fickl H, Theron AJ, Grimmer H, Oommen J, Ramafi GJ, Steel HC, Anderson R (2006) Vanadium promotes hydroxyl radical formation by activated human neutrophils. Free Radical Bio Med 40(1):146–155CrossRefGoogle Scholar
  47. 47.
    Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2012) Biochemical and medical importance of vanadium compounds. Acta Biochim Polon 59(2):195PubMedGoogle Scholar
  48. 48.
    Zwolak I, Zaporowska H (2010) Effects of zinc and selenium pretreatment on vanadium-induced cytotoxicity in vitro. Trace Elem Electroly 27(1):20–28CrossRefGoogle Scholar
  49. 49.
    Ghio AJ, Stonehuerner J, Soukup JM, Dailey LA, Kesic MJ, Cohen MD (2015) Iron diminishes the in vitro biological effect of vanadium. J Inorg Biochem 147:126–133CrossRefPubMedGoogle Scholar
  50. 50.
    Slowik A, Turaj W, Pankiewicz J, Dziedzic T, Szermer P, Szczudlik A (2002) Hypercortisolemia in acute stroke is related to the inflammatory response. J Neurol Sci 196(1):27–32CrossRefPubMedGoogle Scholar
  51. 51.
    Dousset B, Benderdour M, Hess K, Mayap-Nzietchueng R, Belleville F, Duprez A (2000) Effects of boron in wound healing. In: Roussel AM, Anderson RA, Favrier AE (eds) Trace elements in man and animals 10. Springer, US, pp. 1061–1065Google Scholar
  52. 52.
    Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208CrossRefPubMedGoogle Scholar
  53. 53.
    Lai M, Wang D, Lin Z, Zhang Y (2015) Small molecule copper and its relative metabolites in serum of cerebral ischemic stroke patients. J Stroke Cerebrovasc Dis. doi: 10.1016/j.jstrokecerebrovasdis.2015.09.020 Google Scholar
  54. 54.
    Munshi A, Babu S, Kaul S, Shafi G, Rajeshwar K, Alladi S, Jyothy A (2010) Depletion of serum zinc in ischemic stroke patients. Methods Find Exp Clin Pharmacol 32(6):433–436PubMedGoogle Scholar
  55. 55.
    Li YV (2012) Zinc overload in stroke. In: Li YV, Zhang JH (eds) Metal ion in stroke. Springer, New York, pp. 167–189CrossRefGoogle Scholar
  56. 56.
    Kudrin AV, Gromova OA (2003) Two faces of zinc in the brain. Trace Elem Electroly 20(1):1–4CrossRefGoogle Scholar
  57. 57.
    Shabanzadeh AP, Shuaib A, Yang T, Salam A, Wang CX (2004) Effect of zinc in ischemic brain injury in an embolic model of stroke in rats. Neurosci Lett 356(1):69–71CrossRefPubMedGoogle Scholar
  58. 58.
    Laurberg P (2009) Thyroid function: thyroid hormones, iodine and the brain-an important concern. Nat Rev Endocrinol 5(9):475–476CrossRefPubMedGoogle Scholar
  59. 59.
    Joanta AE, Filip A, Clichici S, Andrei S, Daicoviciu D (2006) Iodide excess exerts oxidative stress in some target tissues of the thyroid hormones. Acta Physiol Hung 93(4):347–359CrossRefPubMedGoogle Scholar
  60. 60.
    Thompson FK (2007) Is there a thyroid-cortisol-depression axis. Thyroid Science 2(10):1Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Lydmila L. Klimenko
    • 1
  • Anatoly V. Skalny
    • 2
    • 3
    • 4
  • Aliya A. Turna
    • 5
  • Alexey A. Tinkov
    • 3
    • 4
    • 6
    Email author
  • Maria N. Budanova
    • 1
  • Ivan S. Baskakov
    • 1
  • Marina S. Savostina
    • 7
  • Aksana N. Mazilina
    • 7
  • Anatoly I. Deev
    • 1
    • 8
  • Alexandr A. Nikonorov
    • 6
  1. 1.Institute of Chemical Physics of N. N. SemenovRussian Academy of SciencesMoscowRussia
  2. 2.Russian Society of Trace Elements in MedicineANO “Centre for Biotic Medicine”MoscowRussia
  3. 3.Laboratory of biotechnology and applied bioelementologyYaroslavl State UniversityYaroslavlRussia
  4. 4.All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR)MoscowRussia
  5. 5.Federal Public Budgetary Educational Institution of Additional Professional Education Institute of Professional DevelopmentFederal Medical-Biological Agency of RussiaMoscowRussia
  6. 6.Department of BiochemistryOrenburg State Medical UniversityOrenburgRussia
  7. 7.Clinical Hospital No. 123Federal Medical-Biological Agency of RussiaOdintsovoRussia
  8. 8.Department of General and Medical BiophysicsN. I. Pirogov Russian National Research Medical UniversityMoscowRussia

Personalised recommendations