Skip to main content

Advertisement

Log in

ZnO Nanoparticles Upregulates Adipocyte Differentiation in 3T3-L1 Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study was aimed to investigate the effect of zinc oxide (ZnO) nanoparticles on 3T3-L1 cell differentiation, by quantitating peroxisome proliferators-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), fatty acid binding protein 4 (FABP4), sterol regulatory element-binding transcription factor 1 (SREBP1), and serine-threonine kinase cyclin-dependent kinase 4 (cdk4), which are critical for adipogenesis. 3T3-L1 preadipocyte cells were cultured and differentiated with the standard differentiation medium. Sulforhodamine B (SRB) assay determined 3T3-L1 cell viability. ZnO nanoparticles increased the lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. The quantitative PCR (qPCR) analysis showed that the PPARγ, FABP4, C/EBPα, and SREBP1 messenger RNA (mRNA) expression was significantly increased in the ZnO nanoparticle-treated 3T3-L1 adipocytes. Western blot analysis showed increased PPARγ, FABP4, C/EBPα, and SREBP1 protein expression compared to their respective controls. Also, the immunofluorescence study showed the increased cdk4 and PPARγ expression in the nanoparticle-treated cells. Taking all these data together, it is concluded that ZnO nanoparticles may be a potent substance to alter 3T3-L1 preadipocyte differentiation and adipogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hirotaka U, Takakazu Y, Haruka A, Akihiro I, Satoshi I, Shouichi M, Akio I (2013) The roles of salivary secretion, brain-gut peptides, and oral hygiene in obesity. Obes Res Clin Pract 7:e321–e329

    Article  Google Scholar 

  2. Muthuraman P, Senthilkumar R, Srikumar K (2009) Alterations in beta-islets of Langerhans in alloxan-induced diabetic rats by marine Spirulina platensis. J Enzym Inhib Med Ch 24(6):1253–1256

    Article  CAS  Google Scholar 

  3. Arsène F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55:3–9

    Article  PubMed  Google Scholar 

  4. Hongo T (1994) Mineral and trace element nutrition. Daiichi Press, Tokyo, pp. 377–395

    Google Scholar 

  5. Muthuraman P, Enkhtaivan G, Bhupendra M, Chandrasekaran M, Rafi N, Kim DH (2015) Investigation of the role of aspartame in apoptosis process in Hela cells. Saudi J Biol Sci. doi:10.1016/j.sjbs.2015.06.01

    Google Scholar 

  6. Sen A, Lea-Currie YR, Sujkowska D, Franklin DM, Wilkison WO, Halvorsen YD, Gimble JM (2001) Adipogenic potential of human adipose-derived stromal cells from multiple donors is heterogeneous. J Cell Biochem 81:312–319

    Article  CAS  PubMed  Google Scholar 

  7. You Bing Y, Muthuraman P, Inho H (2013) The effect of Troglitazone, a PPARγ agonist on lipid accumulation and related gene expression in Hanwoo muscle satellite cell. J Physiol Biochem 69(1):97–109

    Article  Google Scholar 

  8. Muthuraman P, Ramkumar K, Kim DH (2014) Analysis of the dose-dependent effect of zinc oxide nanoparticles on the oxidative stress and antioxidant enzyme activity in adipocytes. Appl Biochem Biotech 174(8):2851–2863

    Article  CAS  Google Scholar 

  9. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.

  10. Muthuraman P, Jeongeun P, Eunjung K (2014) Aspartame down-regulates 3T3-L1 differentiation. In Vitro Cell Dev Biol-Anim 50:851–857

    Article  Google Scholar 

  11. Muthuraman P, Muthuviveganandavel V, Ravikumar K, Dongpil K (2014) Effect of cortisol on calpains in the C2C12 and 3T3-L1Cells. Appl Biochem Biotechnol 172:3153–3162

    Article  CAS  PubMed  Google Scholar 

  12. Muthuraman P, Srikumar K (2010) Induction of hexokinase I expression in normal and diabetic rats by a brassinosteroid isoform. Eur J Pharm Sci 41(1):1–9

    Article  CAS  PubMed  Google Scholar 

  13. White UA, Stephens JM (2010) Transcriptional factors that promote the formation of white adipose tissue. Mol Cell Endocrinol 318:10–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wang YX (2010) PPARs: diverse regulators of energy metabolism and metabolic diseases. Cell Res 20:124–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Rabinovitch M (2010) PPARγ and the pathobiology of pulmonary arterial hypertension. Adv Exp Med Biol 661:447–458

    Article  CAS  PubMed  Google Scholar 

  16. Christodoulides C, Vidal-Puig A (2010) PPARs and adipocyte function. Mol Cell Endocrinol 318:61–68

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi N, Goto T, Taimatsu A, Egawa K, Katoh S, Kusudo T, Sakamoto T, Ohyane C, Lee JY, Kim YI, Uemura T, Hirai S, Kawada T (2009) Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPARγ activation. Biochem Biophys Res Commun 390:1372–1376

    Article  CAS  PubMed  Google Scholar 

  18. Lefterova MI, Lazar MA (2009) New developments in adipogenesis. Trends Endocrinol Metab 20: 107-114.

  19. Matsushime H, Roussel MF, Ashmun RA, Sherr CJ (1991) Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65:701–713

    Article  CAS  PubMed  Google Scholar 

  20. Abella A, Dubus P, Malumbres M, Rane SG, Kiyokawa H, Sicard A, Vignon F, Langin D, Barbacid M, Fajas L (2005) Cdk4 promotes adipogenesis through PPARgamma activation. Cell Metab 2:239–249

    Article  CAS  PubMed  Google Scholar 

  21. Muthuraman P, Muthuviveganandavel V, Kim DH (2015) Cytotoxicity of zinc oxide nanoparticles on antioxidant enzyme activities and mRNA expression in the cocultured C2C12 and 3T3-L1 cells. Appl Biochem Biotech 175(3):1270–1280

    Article  Google Scholar 

  22. May JM, Contoreggi CS (1982) The mechanism of the insulin-like effects of ionic zinc. J Biol Chem 257:4362–4368

    CAS  PubMed  Google Scholar 

  23. Shisheva A, Gefel D, Shechter Y (1991) Insulin-like effects of zinc ion in vitro and in vivo. Preferential effects on desensitized adipocytes and induction of normoglycemia streptozocin-induced rats. Diabetes 41:982–988

    Article  Google Scholar 

  24. Ezaki O (1981) IIb group metal ions (Zn2+, Cd2+, Hg2+) stimulate glucose transport activity by post-insulin receptor kinase mechanism in rat adipocytes. J Biol Chem 264:166118–116122

    Google Scholar 

  25. Fryer A, Miller ER, Ku PK, Ullrey DE (1992) Effect of elevated dietary zinc on growth performance of weanling swine. Michigan State Univ Rep of Swine Res 520:128

    Google Scholar 

  26. Hahn JD, Baker DH (1993) Growth and plasma zinc responses of young pigs fed pharmacological levels of zinc. J Anim Sci 71:3020–3024

    CAS  PubMed  Google Scholar 

  27. Muthuraman P, Kim DH (2015) In vitro toxicity of zinc oxide nanoparticles: a review. J Nano Res 17:158

    Article  Google Scholar 

  28. Brook CG, Lloyd JK, Wolf OH (1972) Relation between the age of onset of obesity and size and a number of adipose cells. BMJ 2:25–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was supported by the KU Research Professor Program of Konkuk University, Seoul, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bong Yeon Jin or Doo Hwan Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandurangan, M., Jin, B.Y. & Kim, D.H. ZnO Nanoparticles Upregulates Adipocyte Differentiation in 3T3-L1 Cells. Biol Trace Elem Res 170, 201–207 (2016). https://doi.org/10.1007/s12011-015-0464-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0464-7

Keywords

Navigation