Skip to main content
Log in

Hesperidin and Silibinin Ameliorate Aluminum-Induced Neurotoxicity: Modulation of Antioxidants and Inflammatory Cytokines Level in Mice Hippocampus

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Mounting evidence suggests that long-term aluminum exposure results in severe toxic effects, including neurobehavioral and neurochemical anomalies. The present study was performed to examine the neuroprotective potential of hesperidin and silibinin against aluminum chloride (AlCl3)-induced neurotoxicity in mice. AlCl3 (100 mg/kg/day) was injected daily through oral gavage for 42 days. Concomitantly, hesperidin (50 and 100 mg/kg/day, p.o.) and silibinin (100 and 200 mg/kg/day, p.o.) was administered for 42 days in different groups. The extent of cognitive impairment was assessed by Morris water maze and novel object recognition test on the 43rd day. Neurotoxicity was assessed by measuring oxido-nitrosative stress and proinflammatory cytokines in the hippocampus of mice. Six weeks treatment with AlCl3 caused cognitive impairment as indicated by an increase in the retention latency time and reduction in the percentage of recognition index. AlCl3-treated group showed oxido-nitrosative stress as indicated by increase in the level of lipid peroxidation, nitrite and depleted reduced glutathione, catalase activity in the hippocampus. Moreover, the chronic AlCl3 administration raised the proinflammatory cytokines (interleukin-1β and tumor necrosis factor-α) level and increased acetylcholinesterase activity and reduced the BDNF content in the hippocampus of AlCl3-treated animals. However, chronic treatment with hesperidin and silibinin at higher doses significantly ameliorated the AlCl3-induced cognitive impairment and hippocampal biochemical anomalies. The present study clearly indicated that hesperidin and silibinin exert neuroprotective effects against AlCl3-induced cognitive impairment and neurochemical changes. Amelioration of cognitive impairment may be attributed to the impediment of oxido-nitrosative stress and inflammation in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yokel RA, McNamara PJ (2001) Aluminium toxicokinetics: an updated mini-review. Pharmacol Toxicol 88:159–167

    Article  CAS  PubMed  Google Scholar 

  2. Kawahara M, Kato-Negishi M (2011) Link between aluminium and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimers Dis 2011:276393

    PubMed Central  PubMed  Google Scholar 

  3. Abdel-Hamid GA (2013) Effect of vitamin E and selenium against aluminium-induced nephrotoxicity in pregnant rats. Folia Histochem Cytobiol 51:312–319

    Article  CAS  PubMed  Google Scholar 

  4. Geyikoglu F (2013) The genotoxic, hepatotoxic, nephrotoxic, haematotoxic and histopathological effects in rats after aluminium chronic intoxication. Toxicol Ind Health 29:780–791

    Article  CAS  PubMed  Google Scholar 

  5. Kumar V, Gill KD (2014) Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration: a review. Neurotoxicology 41:154–166

    Article  CAS  PubMed  Google Scholar 

  6. Tomljenovic L (2011) Aluminium and Alzheimer’s disease: after a century of controversy, is there a plausible link? J Alzheimers Dis 23:567–598

    CAS  PubMed  Google Scholar 

  7. McLachlan DR, Kruck TP, Lukiw WJ, Krishnan SS (1991) Would decreased aluminium ingestion reduce the incidence of Alzheimer’s disease? CMAJ 145:793–804

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Platt B, Fiddler G, Riedel G, Henderson Z (2001) Aluminium toxicity in the rat brain: histochemical and immunocytochemical evidence. Brain Res Bull 55:257–267

    Article  CAS  PubMed  Google Scholar 

  9. Exley C (2004) The pro-oxidant activity of aluminium. Free Radic Biol Med 36:380–387

    Article  CAS  PubMed  Google Scholar 

  10. Lukiw WJ, Percy ME, Kruck TP (2005) Nanomolar aluminium induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture. J Inorg Biochem 99:1895–1898

    Article  CAS  PubMed  Google Scholar 

  11. Verstraeten SV, Aimo L, Oteiza PI (2008) Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol 82:789–802

    Article  CAS  PubMed  Google Scholar 

  12. Behl C (1997) Glucocorticoids enhance oxidative stress-induced cell death in hippocampal neurons in vitro. Endocrinology 138:101–106

    Article  CAS  PubMed  Google Scholar 

  13. Kawahara M (2005) Effects of aluminium on the nervous system and its possible link with neurodegenerative diseases. J Alzheimers Dis 8:171–182

    CAS  PubMed  Google Scholar 

  14. Prakash A, Shur B, Kumar A (2013) Naringin protects memory impairment and mitochondrial oxidative damage against aluminium-induced neurotoxicity in rats. Int J Neurosci 123:636–645

    Article  CAS  PubMed  Google Scholar 

  15. Prakash A, Kumar A (2009) Effect of N-acetyl cysteine against aluminium-induced cognitive dysfunction and oxidative damage in rats. Basic Clin Pharmacol Toxicol 105:98–104

    Article  CAS  PubMed  Google Scholar 

  16. Kumar A, Prakash A, Dogra S (2011) Neuroprotective effect of carvedilol against aluminium induced toxicity: possible behavioural and biochemical alterations in rats. Pharmacol Rep 63:915–923

    Article  CAS  PubMed  Google Scholar 

  17. Kakkar V, Kaur IP (2011) Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. Food Chem Toxicol 49:2906–2913

    Article  CAS  PubMed  Google Scholar 

  18. Nedzvetsky VS (2006) Effects of vitamin E against aluminium neurotoxicity in rats. Biochemistry (Mosc) 71:239–244

    Article  CAS  Google Scholar 

  19. Allagui MS, Feriani A, Saoudi M, Badraoui R, Bouoni Z, Nciri R, Murat JC, Elfeki A (2014) Effects of melatonin on aluminium-induced neurobehavioural and neurochemical changes in aging rats. Food Chem Toxicol 70:84–93

    Article  CAS  PubMed  Google Scholar 

  20. Gaur V, Kumar A (2010) Hesperidin pre-treatment attenuates NO-mediated cerebral ischemic reperfusion injury and memory dysfunction. Pharmacol Rep 62:635–648

    Article  CAS  PubMed  Google Scholar 

  21. Rong Z, Pan R, Xu Y, Zhang C, Cao Y, Liu D (2013) Hesperidin pretreatment protects hypoxia-ischemic brain injury in neonatal rat. Neuroscience 255:292–299

    Article  CAS  PubMed  Google Scholar 

  22. Kumar P, Kumar A (2010) Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington-like symptoms in rats: possible role of nitric oxide. Behav Brain Res 206:38–46

    Article  CAS  PubMed  Google Scholar 

  23. Kamisli S, Ciftci O, Kaya K, Cetin A, Kamisli O, Ozcan C (2013) Hesperidin protects brain and sciatic nerve tissues against cisplatin-induced oxidative, histological and electromyographical side effects in rats. Toxicol Ind Health p. 0748233713483192

  24. Kumar A, Lalitha S, Mishra J (2013) Possible nitric oxide mechanism in the protective effect of hesperidin against pentylenetetrazole (PTZ)-induced kindling and associated cognitive dysfunction in mice. Epilepsy Behav 29:103–111

    Article  PubMed  Google Scholar 

  25. Köksal E, Gülçin I, Beyza S, Sarikaya O, Bursal E (2009) In vitro antioxidant activity of silymarin. J Enzyme Inhib Med Chem 24:395–405

    Article  PubMed  Google Scholar 

  26. Sangeetha N, Aranganathan S, Nalini N (2010) Silibinin ameliorates oxidative stress induced aberrant crypt foci and lipid peroxidation in 1, 2 dimethylhydrazine induced rat colon cancer. Investig New Drugs 28:225–233

    Article  CAS  Google Scholar 

  27. Hou YC, Liou KT, Chern CM, Wang YH, Liao JF, Chang S, Chou YH, Shen YC (2010) Preventive effect of silymarin in cerebral ischemia-reperfusion-induced brain injury in rats possibly through impairing NF-kappaB and STAT-1 activation. Phytomedicine 17:963–73

    Article  CAS  PubMed  Google Scholar 

  28. Marrazzo G, Bosco P, La Delia F, Scapagnini G, Di Giacomo C, Malaguarnera M, Galvano F, Nicolosi A, Li Volti G (2011) Neuroprotective effect of silibinin in diabetic mice. Neurosci Lett 504:252–256

    Article  CAS  PubMed  Google Scholar 

  29. Lu P, Mamiya T, Lu LL, Mouri A, Niwa M, Hiramatsu M, Zou LB, Nagai T, Ikejima T, Nabeshima T (2009) Silibinin attenuates amyloid beta(25-35) peptide-induced memory impairments: implication of inducible nitric-oxide synthase and tumor necrosis factor-alpha in mice. J Pharmacol Exp Ther 331:319–326

    Article  CAS  PubMed  Google Scholar 

  30. Geed M, Garabadu D, Ahmad A, Krishnamurthy S (2014) Silibinin pretreatment attenuates biochemical and behavioural changes induced by intrastriatal MPP+ injection in rats. Pharmacol Biochem Behav 117:92–103

    Article  CAS  PubMed  Google Scholar 

  31. Kumar A, Dogra S, Prakash A (2009) Protective effect of curcumin (Curcuma longa), against aluminium toxicity: possible behavioural and biochemical alterations in rats. Behav Brain Res 205:384–390

    Article  CAS  PubMed  Google Scholar 

  32. Tota S, Kamat PK, Shukla R, Nath C (2011) Improvement of brain energy metabolism and cholinergic functions contributes to the beneficial effects of silibinin against streptozotocin induced memory impairment. Behav Brain Res 221:207–215

    Article  CAS  PubMed  Google Scholar 

  33. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    Article  PubMed Central  PubMed  Google Scholar 

  34. Leger M (2013) Object recognition test in mice. Nat Protoc 8:2531–2537

    Article  CAS  PubMed  Google Scholar 

  35. Ohkawa HN, Ohishi KY (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  36. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  37. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    Article  CAS  PubMed  Google Scholar 

  38. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  39. Ellman GL, Courtney KD, Featherstone KM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:288–95

    Article  Google Scholar 

  40. Bondy SC, Truong T (1999) Potentiation of beta-folding of beta-amyloid peptide 25-35 by aluminium salts. Neurosci Lett 267:25–28

    Article  CAS  PubMed  Google Scholar 

  41. Becaria A, Bondy SC, Campbell A (2003) Aluminium and copper interact in the promotion of oxidative but not inflammatory events: implications for Alzheimer’s disease. J Alzheimers Dis 5:31–38

    CAS  PubMed  Google Scholar 

  42. Walton JR (2012) Cognitive deterioration and associated pathology induced by chronic low-level aluminium ingestion in a translational rat model provides an explanation of Alzheimer’s disease, tests for susceptibility and avenues for treatment. Int J Alzheimers Dis. doi:10.1155/2012/914947

    PubMed Central  PubMed  Google Scholar 

  43. Bolla KI, Briefel G, Spector D, Schwartz BS, Wieler L, Herron J, Gimenez L (1992) Neurocognitive effects of aluminium. Arch Neurol 49:1021–1026

    Article  CAS  PubMed  Google Scholar 

  44. Bharathi, Shamasundar NM, Sathyanarayana Rao TS, Dhanunjaya Naidu M, Ravid R, Rao KS (2006) A new insight on Al-maltolate-treated aged rabbit as Alzheimer’s animal model. Brain Res Rev 52:275–292

    Article  CAS  PubMed  Google Scholar 

  45. Ghribi O (2002) Lithium inhibits aluminium-induced apoptosis in rabbit hippocampus, by preventing cytochrome c translocation, Bcl-2 decrease, Bax elevation and caspase-3 activation. J Neurochem 82:137–145

    Article  CAS  PubMed  Google Scholar 

  46. Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG (1994) Flavonoids as antioxidants. J Am Chem Soc 116:4846–4851

    Article  CAS  Google Scholar 

  47. Dehmlow C, Murawski N, de Groot H (1996) Scavenging of reactive oxygen species and inhibition of arachidonic acid metabolism by silibinin in human cells. Life Sci 58:1591–1600

    Article  CAS  PubMed  Google Scholar 

  48. Campbell A, Becaria A, Lahiri DK, Sharman K, Bondy SC (2004) Chronic exposure to aluminium in drinking water increases inflammatory parameters selectively in the brain. J Neurosci Res 75:565–572

    Article  CAS  PubMed  Google Scholar 

  49. Mannello F, Ligi D, Canale M (2013) Aluminium, carbonyls and cytokines in human nipple aspirate fluids: possible relationship between inflammation, oxidative stress and breast cancer microenvironment. J Inorg Biochem 128:250–256

    Article  CAS  PubMed  Google Scholar 

  50. Campbell A, Yang EY, Tsai-Turton M, Bondy SC (2002) Pro-inflammatory effects of aluminium in human glioblastoma cells. Brain Res 933:60–65

    Article  CAS  PubMed  Google Scholar 

  51. Sulakhiya K, Kumar P, Jangra A, Dwivedi S, Hazarika NK, Baruah CC, Lahkar M (2014) Honokiol abrogates lipopolysaccharide-induced depressive like behaviour by impeding neuroinflammation and oxido-nitrosative stress in mice. Eur J Pharmacol 744:124–131

    Article  CAS  PubMed  Google Scholar 

  52. Johnson VJ, Sharma RP (2003) Aluminium disrupts the pro-inflammatory cytokine/neurotrophin balance in primary brain rotation-mediated aggregate cultures: possible role in neurodegeneration. Neurotoxicology 24:261–268

    Article  CAS  PubMed  Google Scholar 

  53. Kawahara M, Kato-Negishi M, Hosoda R, Imamura L, Tsuda M, Kuroda Y (2003) Brain-derived neurotrophic factor protects cultured rat hippocampal neurons from aluminium maltolate neurotoxicity. J Inorg Biochem 97:124–131

    Article  CAS  PubMed  Google Scholar 

  54. Zhang L, Jin C, Lu X, Yang J, Wu S, Liu Q, Chen R, Bai C, Zhang D, Zheng L, Du Y, Cai Y (2014) Aluminium chloride impairs long-term memory and downregulates cAMP-PKA-CREB signalling in rats. Toxicology 323:95–108

    Article  CAS  PubMed  Google Scholar 

  55. Kumar A, Chaudhary T, Mishra J (2013) Minocycline modulates neuroprotective effect of hesperidin against quinolinic acid induced Huntington’s disease like symptoms in rats: behavioral, biochemical, cellular and histological evidences. Eur J Pharmacol 720:16–28

    Article  CAS  PubMed  Google Scholar 

  56. Duan S, Guan X, Lin R, Liu X, Yan Y, Lin R, Zhang T, Chen X, Huang J, Sun X, Li Q, Fang S, Xu J, Yao Z, Gu H (2015) Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: a dual-target drug for Alzheimer’s disease treatment. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2015.02.002

    Google Scholar 

  57. Wang J, Zhang HY, Tang XC (2009) Cholinergic deficiency involved in vascular dementia: possible mechanism and strategy of treatment. Acta Pharmacol Sin 30:879–888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Rinwa P, Kumar A (2014) Modulation of nitrergic signalling pathway by American ginseng attenuates chronic unpredictable stress-induced cognitive impairment, neuroinflammation, and biochemical alterations. Naunyn Schmiedeberg’s Arch Pharmacol 387:129–141

    Article  CAS  Google Scholar 

  59. Jangra A, Datusalia AK, Khandwe S, Sharma SS (2013) Amelioration of diabetes-induced neurobehavioral and neurochemical changes by melatonin and nicotinamide: implication of oxidative stress-PARP pathway. Pharmacol Biochem Behav 114:43–51

    Article  PubMed  Google Scholar 

  60. Jangra A, Datusalia AK, Sharma SS (2013) Reversal of neurobehavioral and neurochemical alterations in STZ-induced diabetic rats by FeTMPyP, a peroxynitrite decomposition catalyst and 1, 5-Isoquinolinediol a poly (ADP-ribose) polymerase inhibitor. Neurol Res 36:619–626

    Article  PubMed  Google Scholar 

  61. Thenmozhi AJ, Raja TR, Janakiraman U, Manivasagam T (2015) Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer’s disease in Wistar rats. Neurochem Res. doi:10.1007/s11064-015-1525-1

    Google Scholar 

  62. Remya C, Dileep KV, Tintu I, Variyar EJ, Sadasivan C (2014) Flavanone glycosides as acetylcholinesterase inhibitors: computational and experimental evidence. Indian J Pharm Sci 76:567–570

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India, for financial support. The authors are immensely thankful to the Institutional Level Biotech hub, NIPER Guwahati for providing technical support.

Conflict of Interest

The authors declare no financial or commercial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangala Lahkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangra, A., Kasbe, P., Pandey, S.N. et al. Hesperidin and Silibinin Ameliorate Aluminum-Induced Neurotoxicity: Modulation of Antioxidants and Inflammatory Cytokines Level in Mice Hippocampus. Biol Trace Elem Res 168, 462–471 (2015). https://doi.org/10.1007/s12011-015-0375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0375-7

Keywords

Navigation