Biological Trace Element Research

, Volume 168, Issue 2, pp 508–515 | Cite as

Spectroscopic Evaluation of DNA–Borate Interactions

  • Ayse Ozdemir
  • Omer Faruk Sarioglu
  • Turgay TekinayEmail author


We describe the binding characteristics of two natural borates (colemanite and ulexite) to calf thymus DNA by UV–vis absorbance spectroscopy, circular dichroism (CD) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and a competitive DNA binding assay. Our results suggest that colemanite and ulexite interact with calf thymus DNA under a non-intercalative mode of binding and do not alter the secondary structure of the DNA helix. The FT-IR spectroscopy results indicate that the two borates might interact with DNA through sugar-phosphate backbone binding.


Calf thymus DNA DNA binding Spectroscopy Boron Deoxyribose sugar 



Circular dichroism




Calf thymus DNA


Fourier transform infrared







The authors are thankful to the Turkish National Boron Research Institute (Ulusal Bor Araştırma Enstitüsü (BOREN), Ankara, Turkey) for financial support through Research Grant No. 2012.ç0356 and to E. Kalyoncu, A. D. Özkan, and R. T. Gursacli for their help and support in conducting the experiments described. A. Ozdemir is supported by TUBITAK BIDEB (2211) PhD fellowship. O.F. Sarioglu acknowledges TUBITAK BIDEB (2211-C) for National PhD Scholarship.


  1. 1.
    Davis SM, Drake KD, Maier KJ (2002) Toxicity of boron to the duckweed, Spirodella polyrrhiza. Chemosphere 48:615–620CrossRefPubMedGoogle Scholar
  2. 2.
    Loomis WD, Durst RW (1992) Chemistry and biology of boron. Biofactors 3:229–239PubMedGoogle Scholar
  3. 3.
    Pandey N, Gupta B (2013) The impact of foliar boron sprays on reproductive biology and seed quality of black gram. J Trace Elem Med Biol 27:58–64CrossRefPubMedGoogle Scholar
  4. 4.
    Nielsen FH (1994) Biochemical and physiologic consequences of boron deprivation in humans. Environ Health Perspect 102(Suppl 7):59–63PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Nielsen FH, Hunt CD, Mullen LM, Hunt JR (1987) Effect of dietary boron on mineral, estrogen, and testosterone metabolism in postmenopausal women. FASEB J 1:394–397PubMedGoogle Scholar
  6. 6.
    Ince S, Kucukkurt I, Cigerci IH, Fatih Fidan A, Eryavuz A (2010) The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats. J Trace Elem Med Biol 24:161–164CrossRefPubMedGoogle Scholar
  7. 7.
    Turkez H (2008) Effects of boric acid and borax on titanium dioxide genotoxicity. J Appl Toxicol 28:658–664CrossRefPubMedGoogle Scholar
  8. 8.
    Turkez H, Tatar A, Hacimuftuoglu A, Ozdemir E (2010) Boric acid as a protector against paclitaxel genotoxicity. Acta Biochim Pol 57:95–97PubMedGoogle Scholar
  9. 9.
    Türkez H, Geyikoğlu F, Tatar A, Keleş S, Ozkan A (2007) Effects of some boron compounds on peripheral human blood. Z Naturforsch C 62:889–896CrossRefPubMedGoogle Scholar
  10. 10.
    Rodríguez-Pulido A, Aicart E, Llorca O, Junquera E (2008) Compaction process of calf thymus DNA by mixed cationic-zwitterionic liposomes: a physicochemical study. J Phys Chem B 112:2187–2197CrossRefPubMedGoogle Scholar
  11. 11.
    Ramakrishnan S, Suresh E, Riyasdeen A, Akbarsha MA, Palaniandavar M (2011) DNA binding, prominent DNA cleavage and efficient anticancer activities of tris(diimine)iron(II) complexes. Dalton Trans 40:3524–3536CrossRefPubMedGoogle Scholar
  12. 12.
    Cetin B, Unal HI, Erol O (2012) The negative and positive electrorheological behavior and vibration damping characteristics of colemanite and polyindene/colemanite conducting composite. Smart Mater Struct 21:125011CrossRefGoogle Scholar
  13. 13.
    Ulexite (n.d.) ChemicalBook Inc. Accessed 04 May 2015
  14. 14.
    Chen LM, Liu J, Chen JC, Tan CP, Shi S, Zheng KC, Ji LN (2008) Synthesis, characterization, DNA-binding and spectral properties of complexes [Ru(L)4(dppz)]2+ (L=Im and MeIm). J Inorg Biochem 102:330–341CrossRefPubMedGoogle Scholar
  15. 15.
    Strand SP, Danielsen S, Christensen BE, Vårum KM (2005) Influence of chitosan structure on the formation and stability of DNA-chitosan polyelectrolyte complexes. Biomacromolecules 6:3357–3366CrossRefPubMedGoogle Scholar
  16. 16.
    F. Menges “Spekwin32 - optical spectroscopy software”, Version, 2013,
  17. 17.
    Wu SS, Yuan WB, Wang HY, Zhang Q, Liu M, Yu KB (2008) Synthesis, crystal structure and interaction with DNA and HSA of (N, N’-dibenzylethane-1,2-diamine) transition metal complexes. J Inorg Biochem 102:2026–2034CrossRefPubMedGoogle Scholar
  18. 18.
    Markovitsi D (2009) Interaction of UV radiation with DNA helices. Pure Appl Chem 81:1635–1644CrossRefGoogle Scholar
  19. 19.
    Sirajuddin M, Ali S, Badshah A (2013) Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry. J Photochem Photobiol B 124:1–19CrossRefPubMedGoogle Scholar
  20. 20.
    Eshkourfu R, Čobeljić B, Vujčić M, Turel I, Pevec A, Sepčić K, Zec M, Radulović S, Srdić-Radić T, Mitić D, Andjelković K, Sladić D (2011) Synthesis, characterization, cytotoxic activity and DNA binding properties of the novel dinuclear cobalt(III) complex with the condensation product of 2-acetylpyridine and malonic acid dihydrazide. J Inorg Biochem 105:1196–1203CrossRefPubMedGoogle Scholar
  21. 21.
    Ting CY, Hsu CT, Hsu HT, Su JS, Chen TY, Tarn WY, Kuo YH, Whang-Peng J, Liu LF, Hwang J (2013) Isodiospyrin as a novel human DNA topoisomerase I inhibitor. Biochem Pharmacol 66:1981–1991CrossRefGoogle Scholar
  22. 22.
    Ju CC, Zhang AG, Yuan CL, Zhao XL, Wang KZ (2011) The interesting DNA-binding properties of three novel dinuclear Ru(II) complexes with varied lengths of flexible bridges. J Inorg Biochem 105:435–443CrossRefPubMedGoogle Scholar
  23. 23.
    Kelly JM, Tossi AB, McConnell DJ, OhUigin C (1985) A study of the interactions of some polypyridylruthenium (II) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation. Nucleic Acids Res 13:6017–6034PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336CrossRefPubMedGoogle Scholar
  25. 25.
    Kumar RS, Arunachalam S (2009) DNA binding and antimicrobial studies of polymer-copper(II) complexes containing 1,10-phenanthroline and L-phenylalanine ligands. Eur J Med Chem 44:1878–1883CrossRefPubMedGoogle Scholar
  26. 26.
    Ivanov VF, Minchenkova LE, Schyolkina AK, Poletayer AI (1973) Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers 12:89–110CrossRefPubMedGoogle Scholar
  27. 27.
    Kunwar A, Simon E, Singh U, Chittela RK, Sharma D, Sandur SK, Priyadarsini IK (2011) Interaction of a curcumin analogue dimethoxycurcumin with DNA. Chem Biol Drug Des 77:281–287CrossRefPubMedGoogle Scholar
  28. 28.
    Jangir DK, Charak S, Mehrotra R, Kundu S (2011) FTIR and circular dichroism spectroscopic study of interaction of 5-fluorouracil with DNA. J Photochem Photobiol B 105:143–148CrossRefPubMedGoogle Scholar
  29. 29.
    Uma V, Elango M, Nair BU (2007) Copper(II) terpyridine complexes: effect of substituent on DNA binding and nuclease activity. Eur J Inorg Chem 22:3484–3490CrossRefGoogle Scholar
  30. 30.
    Mantsch HH, Chapman D (1996) Infrared spectroscopy of biomolecules. A John Wiley & Sons, Inc., New YorkGoogle Scholar
  31. 31.
    Adali T, Bentaleb A, Elmarzugi N, Hamza AM (2013) PEG-calf thymus DNA interactions: conformational, morphological and spectroscopic thermal studies. Int J Biol Macromol 61:373–378CrossRefPubMedGoogle Scholar
  32. 32.
    Agarwal S, Jangir DK, Singh P, Mehrotra R (2014) Spectroscopic analysis of the interaction of lomustine with calf thymus DNA. J Photochem Photobiol B 130:281–286CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ayse Ozdemir
    • 1
    • 2
  • Omer Faruk Sarioglu
    • 1
    • 2
  • Turgay Tekinay
    • 3
    • 4
    Email author
  1. 1.Institute of Materials Science & NanotechnologyBilkent UniversityAnkaraTurkey
  2. 2.UNAM-National Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
  3. 3.Department of Medical Biology and Genetics, Faculty of MedicineGazi UniversityAnkaraTurkey
  4. 4.Life Sciences Application and Research CenterGazi UniversityAnkaraTurkey

Personalised recommendations