Skip to main content
Log in

Application of Cloud Point Extraction for Cadmium in Biological Samples of Occupationally Exposed Workers: Relation Between Cadmium Exposure and Renal Lesion

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) level in blood and urine of soldering iron workers (n = 49) and 41 matched healthy controls has been assessed. Cloud point extraction was employed for preconcentration of Cd. The Cd ions formed hydrophobic complex with 9,10-phenanthraquinone monoethyl thiosemicarbazone that was extracted by surfactant-rich phases in the nonionic surfactant Triton X-114. The surfactant-rich phase was diluted with 1 M HNO3 in methanol prior to its analysis by graphite furnace atomic absorption spectrometry. The parameters affecting the extraction efficiency of the proposed method, such as solution pH, amount of complexing agent, surfactant concentration, temperature, and incubation time, were optimized. Under the optimum experimental conditions, the detection limit and the enrichment factor were 0.04 μg L−1 and 61, respectively. Relative standard deviation of 10 μg L−1 Cd was less than 3.0 %. The accuracy of the method was examined by analysis of certified reference materials. It was observed that soldering iron workers are liable to Cd overload as indicated by higher levels of Cd in blood and urine when compared with the controls. This exposure may lead to kidney damage indicated by elevation of urinary excretion of both N-acetyl-β-d-glucosaminidase and β2-microglobulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liu J, Goyer RA, Waalkes MP (2008) Toxic effects of metals. In: Klaassen CD (ed) Casarett and Doull’s toxicology, the basic science of poisons, 7th edn. McGraw-Hill, New York, pp 931–979

    Google Scholar 

  2. Hossn E, Mokhtar G, El-Awady M, Ali I, Morsy M, Dawood A (2001) Environmental exposure of the pediatric age groups in Cairo City and its suburbs to cadmium pollution. Sci Total Environ 273:135–146

    Article  Google Scholar 

  3. Mortada WI, Sobh MA, El-Defrawy MM (2004) Study of exposure to cadmium, lead, and mercury from cigarette smoking and its impact on renal integrity. Med Sci Monit 10:112–116

    Google Scholar 

  4. Hwangbo Y, Weaver VM, Tellez-Plaza M, Guallar E, Lee BK, Navas-Acien A (2011) Blood cadmium and estimated glomerular filtration rate in Korean adults. Environ Health Perspect 119:1800–1805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Järup L, Persson B, Elinder CG (1995) Decreased glomerular filtration rate in solderers exposed to cadmium. Occup Environ Med 52:818–822

    Article  PubMed Central  PubMed  Google Scholar 

  6. Kaewnate Y, Niyomtam S, Tangvarasittichai O, Meemark S, Pingmuangkaew P, Tangvarasittichai S (2012) Association of elevated urinary cadmium with urinary stone, hypercalciuria and renal tubular dysfunction in the population of cadmium-contaminated area. Bull Environ Contam Toxicol 89:1120–1124

    Article  CAS  PubMed  Google Scholar 

  7. Thomas LD, Elinder CG, Tiselius HG, Wolk A, Akesson A (2013) Dietary cadmium exposure and kidney stone incidence: a population-based prospective cohort study of men & women. Environ Int 59:148–151

    Article  CAS  PubMed  Google Scholar 

  8. Hellström L, Elinder CG, Dahlberg B, Lundberg M, Järup L, Persson B, Axelson O (2001) Cadmium exposure and end-stage renal disease. Am J Kidney Dis 38:1001–1008

    Article  PubMed  Google Scholar 

  9. Welz B (1985) Atomic absorption spectroscopy. Wiley-VCH, Weinheim

    Google Scholar 

  10. Soylak M, Tuzen M (2008) Coprecipitation of gold(III), palladium(II) and lead(II) for their flame atomic absorption spectrometric determinations. J Hazard Mater 152:656–661

    Article  CAS  PubMed  Google Scholar 

  11. Yin P, Xu Q, Qu R, Zhao G, Sun Y (2010) Adsorption of transition metal ions from aqueous solutions onto a novel silica gel matrix inorganic–organic composite material. J Hazard Mater 173:710–716

    Article  CAS  PubMed  Google Scholar 

  12. Hassanien MM, Kenawy IM, Mostafa MR, El-Dellay H (2011) Extraction of gallium, indium and thallium from aquatic media using amino silica gel modified by gallic acid. Microchim Acta 172:137–145

    Article  CAS  Google Scholar 

  13. Pan L, de Zhang Z (2009) Solvent extraction and separation of palladium(II) and platinum(IV) from hydrochloric acid medium with dibutyl sulfoxide. Min Eng 22:1271–1276

    Article  CAS  Google Scholar 

  14. Khajeh M (2011) Response surface modelling of lead pre-concentration from food samples by miniaturised homogenous liquid-liquid solvent extraction: box-behnken design. Food Chem 129:1832–1838

    Article  CAS  Google Scholar 

  15. Farajzadeh MA, Bahram M, Zorita S, Mehr BG (2009) Optimization and application of homogeneous liquid-liquid extraction in preconcentration of copper (II) in a ternary solvent system. J Hazard Mater 161:1535–1543

    Article  CAS  PubMed  Google Scholar 

  16. Galbeiro R, Garcia S, Gaubeur I (2014) A green and efficient procedure for the preconcentration and determination of cadmium, nickel and zinc from freshwater, hemodialysis solutions and tuna fish samples by cloud point extraction and flame atomic absorption spectrometry. J Trace Elem Med Biol 28:160–165

    Article  CAS  PubMed  Google Scholar 

  17. Mortada WI, Ali AZ, Hassanien MM (2013) Mixed micelle-mediated extraction of alizarin red S complexes of Zr(IV) and Hf(IV) ions prior to their determination by inductively coupled plasma-optical emission spectrometry. Anal Methods 5:5234–5240

    Article  CAS  Google Scholar 

  18. Mortada WI, Hassanien MM, El-Asmy AA (2013) Speciation of platinum in blood plasma and urine by micelle-mediated extraction and graphite furnace atomic absorption spectrometry. J Trace Elem Med Biol 27:267–272

    Article  CAS  PubMed  Google Scholar 

  19. Mortada WI, Hassanien MM, El-Asmy AA (2013) Cloud point extraction for the determination of trace amounts of Pt(IV) by graphite furnace atomic absorption spectrometry. Anal Methods 5:530–535

    Article  CAS  Google Scholar 

  20. Pytlakowska K, Kozik V, Dabioch M (2013) Complex-forming organic ligands in cloud-point extraction of metal ions: a review. Talanta 110:202–228

    Article  CAS  PubMed  Google Scholar 

  21. Reddy K, Kumar J, Narayana S, Ramachandraiah C, Thriveni T, Reddy A (2007) Spectrophotometric determination of zinc in foods using N-ethyl-3-carbazolecarboxaldehyde-3-thiosemicarbazone: evaluation of a new analytical reagent. Food Chem 101:585–591

    Article  CAS  Google Scholar 

  22. Sarma LS, Kumar JR, Reddy KJ, Thriveni T, Reddy AV (2008) Development of highly sensitive extractive spectrophotometric determination of nickel(II) in medicinal leaves, soil, industrial effluents and standard alloy samples using pyridoxal-4-phenyl-3-thiosemicarbazone. J Trace Elem Med Biol 22:285–295

    Article  CAS  PubMed  Google Scholar 

  23. Reddy SA, Reddy KJ, Lakshminaraya S, Priya DL, Rao YS, Reddy AV (2008) Extractive spectrophotometric determination of trace amounts of cadmium(II) in medicinal leaves and environmental samples using benzildithiosemicarbazone (BDTSC). J Hazard Mater 152:903–909

    Article  CAS  PubMed  Google Scholar 

  24. Abou-El-Sherbini KS, Mostafa GA, Hassanien MM (2003) A new selective chromogenic reagent for the spectrophotometric determination of thallium(I) and (III) and its separation using flotation and the solid-phase extraction on polyurethane foam. Anal Sci 19:1269–1275

    Article  CAS  PubMed  Google Scholar 

  25. Vasiliades J (1976) Reaction of alkaline sodium picrate with creatinine: 1-kinetics and mechanism of formation of the mono-creatinine picric acid complex. Clin Chem 22:1664–1671

    CAS  PubMed  Google Scholar 

  26. Maruhn D (1976) Rapid colorimetric assay of b-galactosidase and N-acetyl-β-glucosaminidase in human urine. Clin Chim Acta 73:453–461

    Article  CAS  PubMed  Google Scholar 

  27. Brustolin D, Maierna M, Aguzzi F, Zoppi F, Tarenghi G, Berti G (1991) Immunoturbidimetric method for routine determination of apolipoprotein A-I and B. Clin Chem 37:742–747

    CAS  PubMed  Google Scholar 

  28. Paleologos EK (2005) Micelle-mediated separation and cloud-point extraction. TrAC Trends Anal Chem 24:426–436

    Article  CAS  Google Scholar 

  29. Liu H-M, Jiang J-K, Lin Y-H (2012) Simultaneous determination of gallium(III) and indium(III) in urine and water samples with cloud point extraction and by inductively coupled plasma optical emission spectrometry. Anal Lett 45:2096–2107

    Article  CAS  Google Scholar 

  30. Xiang G, Wen S, Wu X, Jiang X, He L, Liu Y (2012) Selective cloud point extraction for the determination of cadmium in food samples by flame atomic absorption spectrometry. Food Chem 132:532–536

    Article  CAS  PubMed  Google Scholar 

  31. Baliza PX, Cardoso LA, Lemos VA (2012) A preconcentration procedure for the determination of cadmium in biological material after on-line cloud point extraction. Environ Monit Assess 184:4455–4460

    Article  CAS  PubMed  Google Scholar 

  32. Citak D, Tuzen M (2012) Cloud point extraction of copper, lead, cadmium, and iron using 2,6-diamino-4-phenyl-1,3,5-triazine and nonionic surfactant, and their flame atomic absorption spectrometric determination in water and canned food samples. J AOAC Int 95:1170–1175

    Article  CAS  PubMed  Google Scholar 

  33. Rezende HC, Nascentes CC, Coelho NMM (2011) Cloud point extraction for determination of cadmium in soft drinks by thermospray flame furnace atomic absorption spectrometry. Microchem J 97:118–121

    Article  CAS  Google Scholar 

  34. Zhao L, Zhong S, Fang K, Qian Z, Chen J (2012) Determination of cadmium(II), cobalt(II), nickel(II), lead(II), zinc(II), and copper(II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry. J Hazard Mater 239–240:206–212

    Article  PubMed  Google Scholar 

  35. Ning J, Jiao Y, Zhao J, Meng L, Yang Y (2014) Cloud point extraction-flame atomic absorption spectrometry method for preconcentration and determination of trace cadmium in water samples. Water Sci Technol 70:605–611

    Article  CAS  PubMed  Google Scholar 

  36. Tavallali H, Boustani F, Yazdandoust M, Aalaei M, Tabandeh M (2013) Cloud point extraction–atomic absorption spectrometry for pre-concentration and determination of cadmium in cigarette samples. Environ Monit Assess 185:4273–4279

    Article  CAS  PubMed  Google Scholar 

  37. Arain SS, Kazi TG, Arain JB, Afridi HI, Brahman KD, Shah F, Arain S, Naeemullah, Panhwar AH (2013) Simultaneous preconcentration of toxic elements in artificial saliva extract of smokeless tobacco product, mainpuri by cloud point extraction method. Ecotoxicol Environ Saf 92:289–296

    Article  CAS  PubMed  Google Scholar 

  38. Jarup L (2002) Cadmium overload and toxicity. Nephrol Dial Transplant 17(Suppl 2):35–39

    Article  CAS  PubMed  Google Scholar 

  39. Nordberg G, Jin T, Wu X, Lu J, Chen L, Liang Y, Lei L, Hong F, Bergdahl IA, Nordberg M (2012) Kidney dysfunction and cadmium exposure–factors influencing dose–response relationships. J Trace Elem Med Biol 26:197–200

    Article  CAS  PubMed  Google Scholar 

  40. Jin T, Wu X, Tang Y, Nordberg M, Bernard A, Ye T, Kong Q, Lundström NG, Nordberg GF (2004) Environmental epidemiological study and estimation of benchmark dose for renal dysfunction in a cadmium-polluted area in China. Biometals 17:525–530

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael I. Mortada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortada, W.I., Hassanien, M.M., Donia, A.F. et al. Application of Cloud Point Extraction for Cadmium in Biological Samples of Occupationally Exposed Workers: Relation Between Cadmium Exposure and Renal Lesion. Biol Trace Elem Res 168, 303–310 (2015). https://doi.org/10.1007/s12011-015-0365-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0365-9

Keywords

Navigation